In vitro biomechanical modulation—retinal detachment in a box
详细信息    查看全文
  • 作者:Fredrik Ghosh ; Karin Arnér ; Linnéa Taylor
  • 关键词:Retinal biomechanics ; Retinal detachment ; Gliosis ; Müller cell ; Ganglion cell
  • 刊名:Graefe's Archive for Clinical and Experimental Ophthalmology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:254
  • 期:3
  • 页码:475-487
  • 全文大小:8,296 KB
  • 参考文献:1.DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319PubMedCentral CrossRef PubMed
    2.Reichenbach A et al (1991) Development of the rabbit retina. IV. tissue tensility and elasticity in dependence on topographic specializations. Exp Eye Res 53(2):241–251CrossRef PubMed
    3.Schatz P, Holm K, Andreasson S (2007) Retinal function after scleral buckling for recent onset rhegmatogenous retinal detachment: assessment with electroretinography and optical coherence tomography. Retina 27:30–36CrossRef PubMed
    4.Schwartz SG, Flynn HW Jr, Mieler WF (2013) Update on retinal detachment surgery. Curr Opin Ophthalmol 24(3):255–261CrossRef PubMed
    5.Gong Y, Wu X, Sun X, Zhang X, Zhu P (2008) Electroretinogram changes after scleral buckling surgery of retinal detachment. Doc Ophthalmol 117(2):103–109CrossRef PubMed
    6.Algvere PV, Jahnberg P, Textorius O (1999) The Swedish retinal detachment register. I. a database for epidemiological and clinical studies. Graefes Arch Clin Exp Ophthalmol 237(2):137–144CrossRef PubMed
    7.Haimann MH, Burton TC, Brown CK (1982) Epidemiology of retinal detachment. Arch Ophthalmol 100(2):289–292CrossRef PubMed
    8.Johansson K, Malmsjö M, Ghosh F (2006) Tailored vitrectomy and laser photocoagulation without scleral buckling for primary rhegmatogenous retinal detachment. Br J Ophthalmol 90:1286–1291PubMedCentral CrossRef PubMed
    9.Wang M, Munch IC, Hasler PW, Prünte C, Larsen M (2008) Central serous chorioretinopathy. Acta Ophthalmol 86(2):126–145CrossRef PubMed
    10.Sørensen NF et al (2012) The effect of subretinal viscoelastics on the porcine retinal function. Graefe’s Arch Clin Exp Ophthalmol 250:79–86CrossRef
    11.Taylor L, Moran D, Arnér K, Warrant E, Ghosh F (2013) Stretch to see—lateral tension strongly determines cell survival in long-term cultures of adult porcine retina. Invest Ophthalmol Vis Sci 54:1845–1856CrossRef PubMed
    12.Taylor L, Arnér K, Holmgren Taylor I, Ghosh F (2014) Feet on the ground: physical support of the inner retina is a strong determinant for cell survival and structural preservation in vitro. Invest Ophthalmol Vis Sci 55:2200–2213CrossRef PubMed
    13.Chandler MJ, Smith PJ, Samuelson DA, MacKay EO (1999) Photoreceptor density of the domestic pig retina. Vet Ophthalmol 2:179–184CrossRef PubMed
    14.García M, Ruiz-Ederra J, Hernández-Barbáchano H, Vecino E (2005) Topography of pig retinal ganglion cells. J Comp Neurol 486(4):361–372CrossRef
    15.Manouchehrian O, Arnér K, Deierborg T, Taylor L (2015) Who let the dogs out?: detrimental role of Galectin-3 in hypoperfusion-induced retinal degeneration. J Neuroinflammation 12:92PubMedCentral CrossRef PubMed
    16.Ghosh F, Johansson K (2012) Neuronal and glial alterations in complex long-term rhegmatogenous retinal detachment. Curr Eye Res 37:704–711CrossRef PubMed
    17.Pastor JC et al (2006) Intraretinal immunohistochemistry findings in proliferative vitreoretinopathy with retinal shortening. Ophthalmic Res 38(4):193–200CrossRef PubMed
    18.Rex TS et al (2002) A survey of molecular expression by photoreceptors after experimental retinal detachment. Invest Ophthalmol Vis Sci 43(4):1234–1247PubMed
    19.Fisher SK, Lewis GP, Linberg KA, Verardo MR (2005) Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24:395–431CrossRef PubMed
    20.Matsumoto H et al (2014) Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 22 55(7):4165–4174CrossRef
    21.Iandiev I et al (2006) Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci 47:2161–2171CrossRef PubMed
    22.Lu YB et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103:17759–17764PubMedCentral CrossRef PubMed
    23.Lu YB et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25:624–631CrossRef PubMed
    24.Ryskamp DA et al (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31(19):7089–7101PubMedCentral CrossRef PubMed
    25.Bringmann A et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424CrossRef PubMed
    26.Bringmann A et al (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28(6):423–451CrossRef PubMed
    27.Taylor L, Arnér K, Ghosh F (2015) First responders: dynamics of pre-gliotic müller cell responses in the isolated adult rat retina. Curr Eye Res 40(12):1245–1260CrossRef PubMed
    28.Fontainhas AM, Townes-Anderson E (2011) RhoA inactivation prevents photoreceptor axon retraction in an in vitro model of acute retinal detachment. Invest Ophthalmol Vis Sci 52(1):579–587PubMedCentral CrossRef PubMed
    29.Komaromy AM et al (2003) Long-term effect of retinal ganglion cell axotomy on the histomorphometry of other cells in the porcine retina. J Glaucoma 12:307–315CrossRef PubMed
    30.Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317CrossRef PubMed
    31.Watanabe M, Fukuda Y (2002) Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog Retin Eye Res 21(6):529–553CrossRef PubMed
    32.Yao XY, Hageman GS, Marmor MF (1994) Retinal adhesiveness in the monkey. Invest Ophthalmol Vis Sci 35(2):744–748PubMed
    33.Jackson TL et al (2003) An experimental model of rhegmatogenous retinal detachment: surgical results and glial cell response. Invest Ophthalmol Vis Sci 44:4026–4034CrossRef PubMed
  • 作者单位:Fredrik Ghosh (1)
    Karin Arnér (1)
    Linnéa Taylor (1)

    1. Ophthalmology, Department of Clinical Sciences, Lund University, S-22184, Lund, Sweden
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Ophthalmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-702X
文摘
Background To illustrate the importance of biomechanical impact on tissue health within the central nervous system (CNS), we herein describe an in vitro model of rhegmatogenous retinal detachment (RRD) in which disruption and restoration of physical tissue support can be studied in isolation.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.