Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake
详细信息    查看全文
  • 作者:Sweety Mathew (6)
    Susanne Krug (7)
    Thomas Skurk (7) (8)
    Anna Halama (6) (9)
    Antonia Stank (10)
    Anna Artati (9)
    Cornelia Prehn (9)
    Joel A Malek (11)
    Gabi Kastenm眉ller (10)
    Werner R枚misch-Margl (10)
    Jerzy Adamski (12) (13) (9)
    Hans Hauner (7) (8)
    Karsten Suhre (10) (6)

    6. Department of Physiology and Biophysics
    ; Weill Cornell Medical College 鈥?Qatar ; Doha ; Qatar
    7. Else Kr枚ner-Fresenius-Centre for Nutritional Medicine
    ; Klinikum rechts der Isar ; Technische Universit盲t M眉nchen ; M眉nchen ; Germany
    8. ZIEL - Research Centre for Nutrition and Food Sciences
    ; Technische Universit盲t M眉nchen ; Freising-Weihenstephan ; Germany
    9. Institute of Experimental Genetics
    ; Genome Analysis Center ; Helmholtz Zentrum M眉nchen ; German Research Center for Environmental Health ; Neuherberg ; Germany
    10. Institute of Bioinformatics and Systems Biology
    ; Helmholtz Zentrum M眉nchen ; German Research Center for Environmental Health ; Neuherberg ; Germany
    11. Genomics Core
    ; Weill Cornell Medical College 鈥?Qatar ; Doha ; Qatar
    12. German Center for Diabetes Research
    ; Neuherberg ; Germany
    13. Lehrstuhl f眉r Experimentelle Genetik
    ; Technische Universit盲t M眉nchen ; Freising-Weihenstephan ; Germany
  • 关键词:Metabolomics ; Nutritional challenging ; Ramadan fasting ; Study design ; Clinical research
  • 刊名:Journal of Translational Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:519 KB
  • 参考文献:1. Sackett, DL, Rosenberg, WM, Gray, J, Haynes, RB, Richardson, WS (1996) Evidence based medicine: what it is and what it isn't. BMJ: British Med J 312: pp. 71 12.7023.71" target="_blank" title="It opens in new window">CrossRef
    2. Bansal, S, Buring, JE, Rifai, N, Mora, S, Sacks, FM, Ridker, PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298: pp. 309-316 CrossRef
    Postprandial blood glucose. American Diabetes Association. Diabetes Care 24: pp. 775-778 CrossRef
    3. Nicholson, JK, Lindon, JC, Holmes, E (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: pp. 1181-1189 CrossRef
    4. Artati, A, Prehn, C, M枚ller, G, Adamski, J Assay Tools for Metabolomics. In: Suhre, K eds. (2012) Genetics Meets Metabolomics. Springer, New York, pp. 13-38 CrossRef
    5. Fiehn, O, Kopka, J, Dormann, P, Altmann, T, Trethewey, RN, Willmitzer, L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: pp. 1157-1161 CrossRef
    6. Roux, A, Lison, D, Junot, C, Heilier, JF (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44: pp. 119-135 CrossRef
    7. Imaizumi, A Biochemistry, Genetics and Molecular Biology. In: Roessner, U eds. (2012) Clinical Implementation of Metabolomics.
    8. Beckonert, O, Keun, HC, Ebbels, TM, Bundy, J, Holmes, E, Lindon, JC, Nicholson, JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2: pp. 2692-2703 CrossRef
    9. Wang-Sattler, R, Yu, Y, Mittelstrass, K, Lattka, E, Altmaier, E, Gieger, C, Ladwig, KH, Dahmen, N, Weinberger, KM, Hao, P, Liu, L, Li, Y, Wichmann, HE, Adamski, J, Suhre, K, Illig, T (2008) Metabolic profiling reveals distinct variations linked to nicotine consumption in humans鈥揻irst results from the KORA study. PLoS One 3: pp. e3863 CrossRef
    10. Suhre, K, Meisinger, C, Doring, A, Altmaier, E, Belcredi, P, Gieger, C, Chang, D, Milburn, MV, Gall, WE, Weinberger, KM, Mewes, HW, Hrabe de Angelis, M, Wichmann, HE, Kronenberg, F, Adamski, J, Illig, T (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5: pp. e13953 CrossRef
    11. Sreekumar, A, Poisson, LM, Rajendiran, TM, Khan, AP, Cao, Q, Yu, J, Laxman, B, Mehra, R, Lonigro, RJ, Li, Y, Nyati, MK, Ahsan, A, Kalyana-Sundaram, S, Han, B, Cao, X, Byun, J, Omenn, GS, Ghosh, D, Pennathur, S, Alexander, DC, Berger, A, Shuster, JR, Wei, JT, Varambally, S, Beecher, C, Chinnaiyan, AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457: pp. 910-914 CrossRef
    12. Tukiainen, T, Tynkkynen, T, Makinen, VP, Jylanki, P, Kangas, A, Hokkanen, J, Vehtari, A, Grohn, O, Hallikainen, M, Soininen, H, Kivipelto, M, Groop, PH, Kaski, K, Laatikainen, R, Soininen, P, Pirttila, T, Ala-Korpela, M (2008) A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer's disease. Biochem Biophys Res Commun 375: pp. 356-361 CrossRef
    13. Gall, WE, Beebe, K, Lawton, KA, Adam, KP, Mitchell, MW, Nakhle, PJ, Ryals, JA, Milburn, MV, Nannipieri, M, Camastra, S, Natali, A, Ferrannini, E, Group, RS (2010) alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 5: pp. e10883 CrossRef
    14. Goek, ON, Prehn, C, Sekula, P, Romisch-Margl, W, Doring, A, Gieger, C, Heier, M, Koenig, W, Wang-Sattler, R, Illig, T, Suhre, K, Adamski, J, Kottgen, A, Meisinger, C (2013) Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol Dial Transplant 28: pp. 2131-2138 CrossRef
    15. Hunter, P (2009) Reading the metabolic fine print. EMBO Rep 10: pp. 20-23 CrossRef
    16. Spratlin, JL, Serkova, NJ, Eckhardt, SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15: pp. 431-440 CrossRef
    17. Suhre, K (2012) Genetics Meets Metabolomics: From Experiment to Systems Biology: Springer. CrossRef
    18. Hoffmann, GF, Zschocke, J, Nyhan, WL (2010) Inherited metabolic diseases: a clinical approach: Springer. CrossRef
    19. Shaham, O, Wei, R, Wang, TJ, Ricciardi, C, Lewis, GD, Vasan, RS, Carr, SA, Thadhani, R, Gerszten, RE, Mootha, VK (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4: pp. 214 CrossRef
    20. Kapur, S, Groves, MN, Zava, DT, Kapur, S (2010) Postprandial insulin and triglycerides after different breakfast meal challenges: use of finger stick capillary dried blood spots to study postprandial dysmetabolism. J Diabetes Sci Technol 4: pp. 236-243 CrossRef
    21. Krug, S, Kastenmuller, G, Stuckler, F, Rist, MJ, Skurk, T, Sailer, M, Raffler, J, Romisch-Margl, W, Adamski, J, Prehn, C, Frank, T, Engel, KH, Hofmann, T, Luy, B, Zimmermann, R, Moritz, F, Schmitt-Kopplin, P, Krumsiek, J, Kremer, W, Huber, F, Oeh, U, Theis, FJ, Szymczak, W, Hauner, H, Suhre, K, Daniel, H (2012) The dynamic range of the human metabolome revealed by challenges. FASEB J 26: pp. 2607-2619 CrossRef
    22. Zulyniak, MA, Mutch, DM (2011) Harnessing metabolomics for nutrition research. Curr Pharm Biotechnol 12: pp. 1005-1015 CrossRef
    23. Kim, K, Mall, C, Taylor, SL, Hitchcock, S, Zhang, C, Wettersten, HI, Jones, AD, Chapman, A, Weiss, RH (2014) Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS One 9: pp. e86223 CrossRef
    24. R枚misch-Margl, W, Prehn, C, Bogumil, R, R枚hring, C, Suhre, K, Adamski, J (2012) Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 8: pp. 133-142 CrossRef
    25. Suhre, K, Romisch-Margl, W, de Angelis, MH, Adamski, J, Luippold, G, Augustin, R (2011) Identification of a potential biomarker for FABP4 inhibition: the power of lipidomics in preclinical drug testing. J Biom Screen 16: pp. 467-475 CrossRef
    26. Fahy, E, Sud, M, Cotter, D, Subramaniam, S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35: pp. W606-W612 CrossRef
    27. Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57: pp. 289-300
    28. Boston, RC, Moate, PJ (2008) NEFA minimal model parameters estimated from the oral glucose tolerance test and the meal tolerance test. Am J Physiol Regul Integr Comp Physiol 295: pp. R395-R403 CrossRef
    29. Jensen, MD, Ekberg, K, Landau, BR (2001) Lipid metabolism during fasting. Am J Physiol Endocrinol Metab 281: pp. E789-E793
    30. Coppack, SW, Frayn, KN, Humphreys, SM, Dhar, H, Hockaday, TD (1989) Effects of insulin on human adipose tissue metabolism in vivo. Clin Sci (Lond) 77: pp. 663-670
    31. Coppack, SW, Fisher, RM, Gibbons, GF, Humphreys, SM, McDonough, MJ, Potts, JL, Frayn, KN (1990) Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clin Sci (Lond) 79: pp. 339-348
    32. Mashima, R, Nakanishi-Ueda, T, Yamamoto, Y (2003) Simultaneous determination of methionine sulfoxide and methionine in blood plasma using gas chromatography鈥搈ass spectrometry. Anal Biochem 313: pp. 28-33 CrossRef
    33. Drazic, A, Winter, J (2014) The physiological role of reversible methionine oxidation. Biochim Biophys Acta.
    34. Rubio-Aliaga, I, de Roos, B, Duthie, SJ, Crosley, LK, Mayer, C, Horgan, G, Colquhoun, IJ, Le Gall, G, Huber, F, Kremer, W (2011) Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics 7: pp. 375-387 CrossRef
    35. Krag, E, Phillips, SF (1974) Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53: pp. 1686-1694 CrossRef
    36. LaRusso, NF, Korman, MG, Hoffman, NE, Hofmann, AF (1974) Dynamics of the enterohepatic circulation of bile acids. Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N Engl J Med 291: pp. 689-692 CrossRef
    37. Kalac虇, P, Krausov谩, P (2005) A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem 90: pp. 219-230 CrossRef
    38. Kondo, T, Yamamoto, K, Kimata, A, Ueyama, J, Hori, Y, Takagi, K (2008) Association of glycemic profiles with whole blood polyamine among middle-aged Japanese men: colorimetric assay using oat and barley seedling polyamine oxidase. Environ Health Prev Med 13: pp. 43-51 12199-007-0006-9" target="_blank" title="It opens in new window">CrossRef
    39. Bakhotmah, BA (2011) The puzzle of self-reported weight gain in a month of fasting (Ramadan) among a cohort of Saudi families in Jeddah, Western Saudi Arabia. Nutr J 10: pp. 84 CrossRef
    40. Schulze, A, Lindner, M, Kohlm眉ller, D, Olgem枚ller, K, Mayatepek, E, Hoffmann, GF (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 111: pp. 1399-1406 CrossRef
    41. Zukunft, S, Sorgenfrei, M, Prehn, C, M枚ller, G, Adamski, J (2013) Targeted Metabolomics of Dried Blood Spot Extracts. Chromatographia 76: pp. 1295-1305 CrossRef
    Obesity: preventing and managing the global epidemic.
    42. Rossner, S (2002) Obesity: the disease of the twenty-first century. Int J Obes Relat Metab Disord 26: pp. S2-S4 CrossRef
    43. Lavie, CJ, Milani, RV, Ventura, HO (2009) Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53: pp. 1925-1932 12.068" target="_blank" title="It opens in new window">CrossRef
    44. Flier, JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116: pp. 337-350 CrossRef
    45. Musaiger, AO (2011) Overweight and obesity in eastern mediterranean region: prevalence and possible causes. J Obes 2011: pp. Article ID 407237 CrossRef
    46. Hoey, L, McNulty, H, Askin, N, Dunne, A, Ward, M, Pentieva, K, Strain, J, Molloy, AM, Flynn, CA, Scott, JM (2007) Effect of a voluntary food fortification policy on folate, related B vitamin status, and homocysteine in healthy adults. Am J Clin Nutr 86: pp. 1405-1413
    47. McCarthy, MI (2008) Casting a wider net for diabetes susceptibility genes. Nat Genet 40: pp. 1039-1040 CrossRef
    48. Prokopenko, I, McCarthy, MI, Lindgren, CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24: pp. 613-621 CrossRef
    49. McCarthy, MI, Hirschhorn, JN (2008) Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 17: pp. R156-R165 CrossRef
    50. Gieger, C, Geistlinger, L, Altmaier, E, Hrabe de Angelis, M, Kronenberg, F, Meitinger, T, Mewes, HW, Wichmann, HE, Weinberger, KM, Adamski, J, Illig, T, Suhre, K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4: pp. e1000282 CrossRef
    51. Adamski, J, Suhre, K (2013) Metabolomics platforms for genome wide association studies鈥搇inking the genome to the metabolome. Curr Opin Biotechnol 24: pp. 39-47 12.10.003" target="_blank" title="It opens in new window">CrossRef
    52. Adamski, J (2012) Genome-wide association studies with metabolomics. Genome Med 4: pp. 1-7 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient groups such as individuals with type 2 diabetes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.