High-T behaviour of gedrite: thermoelasticity, cation ordering and dehydrogenation
详细信息    查看全文
  • 作者:Michele Zema (12)
    Mark D. Welch (3) mdw@nhm.ac.uk
    Roberta Oberti (2)
  • 关键词:Gedrite &#8211 ; Thermoelasticity &#8211 ; Dehydrogenation &#8211 ; Cation ordering &#8211 ; Single ; crystal X ; ray diffraction at high ; T
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:163
  • 期:5
  • 页码:923-937
  • 全文大小:680.7 KB
  • 参考文献:1. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522
    2. Blessing RH, Coppens P, Becker P (1974) Computer analysis of step scanned X-ray data. J Appl Cryst 7:488–492
    3. Busing WR, Levy HA (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Cryst 17:142–146
    4. Cameron M, Sueno S, Papike JJ, Prewitt CT (1983) High temperature crystal chemistry of K and Na fluor-richterites. Am Miner 68:924–943
    5. Cannillo E, Germani G, Mazzi F (1983) New crystallographic software for Philips PW11000 single crystal diffractometer. CNR Centro di Studio per la Cristallografia, Internal Report 2
    6. Hawthorne FC, Oberti R (2007) Amphiboles: crystal-chemistry. Rev Miner Geochem 67:1–54
    7. Hawthorne FC, Ungaretti L, Oberti R (1995) Site populations in minerals: terminology and presentation of results. Can Miner 33:907–911
    8. Hawthorne FC, Schindler M, Abdu Y, Sokolova E, Evans BE, Ishida K (2008) The crystal-chemistry of gedrite-group amphiboles. II. Stereochemistry and chemical relations. Miner Mag 72:731–745
    9. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343
    10. Jenkins DM, Corona JC (2006) Molar volume and thermal expansion of glaucophane. Phys Chem Miner 33:356–362
    11. Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Can Miner 41:1355–1370
    12. Lehmann MS, Larsen FK (1974) A method for location of the peaks in stepscan-measured Bragg reflections. Acta Cryst A30:580–584
    13. North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Cryst A24:351–359
    14. Oberti R (2010) HT behaviour and dehydrogenation processes in monoclinic and orthorhombic amphiboles of petrogenetic relevance. Acta Miner Petrogr 6:147
    15. Oberti R, Hawthorne FC, Cannillo E, C谩mara F (2007) Long-range order in amphiboles. Rev Miner Geochem 67:125–172
    16. Oberti R, Zema M, Boiocchi M, Tarantino S, Zanetti A (2009) A thermal expansion dehydrogenation processes in kaersutites: II—models at the atomic scale. Epitome 3:25
    17. Pouchou JL, Pichoir F (1985) “PAP” (φρΖ) procedure for improved quantitative microanalysis. In: Microbeam analysis. San Francisco Press, San Francisco, pp 104–106
    18. Reece JJ, Redfern SAT, Welch MD, Henderson CMB (2000) Mn–Mg disordering in cummingtonite: a high temperature neutron powder diffraction study. Miner Mag 64:255–266
    19. Reece JJ, Redfern SAT, Welch MD, Henderson CMB, McCammon CA (2002) Temperature-dependent Fe2+–Mn2+ order–disorder behaviour in amphiboles. Phys Chem Miner 29:562–570
    20. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570
    21. Robinson P, Spear FS, Schumacher JC, Laird J, Klein C, Evans BW, Doolan BL (1982) Phase relations of metamorphic amphiboles: natural occurrence and theory. Rev Miner 9B:1–227
    22. Schindler M, Sokolova E, Abdu Y, Hawthorne FC, Evans BE, Ishida K (2008) The crystal-chemistry of the gedrite-group amphiboles. I. Crystal structure and site populations. Miner Mag 72:703–730
    23. Schumacher JC (2007) Metamorphic amphiboles: composition and coexistence. Rev Miner Geochem 67:359–416
    24. Sueno S, Cameron M, Papike JJ, Prewitt CT (1978) High temperature crystal chemistry of tremolite. Am Miner 58:649–664
    25. Welch MD, C谩mara F, Della Ventura G, Iezzi G (2007) Non-ambient in situ studies of amphiboles. Rev Miner Geochem 67:223–260
    26. Welch MD, Reece JJ, Redfern SAT (2008) Rapid intracrystalline exchange of divalent cations in amphiboles: a high-temperature neutron diffraction study of synthetic K-richterite AK B(NaCa) C(Mg2.5Ni2.5) Si8 O22 (OH)2. Miner Mag 72:877–886
    27. Welch MD, C谩mara F, Oberti R (2011) Thermoelasticity and high-T behaviour of anthophyllite. Phys Chem Miner 38:321–334
    28. Zema M, Oberti R, Boiocchi M, Tarantino S (2009) Thermal expansion and dehydrogenation processes in kaersutites: I—effects on unit-cell parameters. Epitome 3:248
  • 作者单位:1. Dipartimento di Scienze della Terra e dell鈥橝mbiente, Universit脿 di Pavia, via Ferrata 1, 27100 Pavia, Italy2. CNR-Istituto di Geoscienze e Georisorse, Unit脿 di Pavia, via Ferrata 1, 27100 Pavia, Italy3. Department of Mineralogy, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0967
文摘
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.