The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas
详细信息    查看全文
  • 作者:Jun Guo (1)
    Chengjun Yao (2)
    Hong Chen (3)
    Dongxiao Zhuang (2)
    Weijun Tang (4)
    Guang Ren (4)
    Yin Wang (3)
    Jinsong Wu (2)
    Fengping Huang (2)
    Liangfu Zhou (2)
  • 关键词:Cho/NAA ; Glioma boundary ; 1H ; MRSI ; Tumour infiltration ; Needle biopsy ; Metabolism
  • 刊名:Acta Neurochirurgica
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:154
  • 期:8
  • 页码:1361-1370
  • 全文大小:696KB
  • 参考文献:1. Capper D, Sahm F, Hartmann C, Meyermann R, von Deimling A, Schittenhelm J (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34:1199鈥?204 CrossRef
    2. Capper D, Weissert S, Balss J, Habel A, Meyer J, Jager D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, Hartmann C, von Deimling A (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245鈥?54 CrossRef
    3. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599鈥?01 CrossRef
    4. Chen J, Huang SL, Li T, Chen XL (2006) In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry. Neuroradiology 48:312鈥?18 CrossRef
    5. Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103:1227鈥?233 CrossRef
    6. Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, Mikkelsen T (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823鈥?29
    7. De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721鈥?27 CrossRef
    8. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604鈥?12
    9. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53:799鈥?08 CrossRef
    10. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56(291鈥?98):291鈥?98 CrossRef
    11. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865鈥?74 CrossRef
    12. Kemp GJ (2000) Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 22:418鈥?28 CrossRef
    13. Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 14:339鈥?49 CrossRef
    14. Liu X, Germin BI, Zhong J, Ekholm S (2010) N-Acetyl peak in MR spectra of intracranial metastatic mucinous adenocarcinomas. Magn Reson Imaging 28:1390鈥?394 CrossRef
    15. Matsumura A, Isobe T, Anno I, Takano S, Kawamura H (2005) Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MR spectroscopy study J Clin Neurosci 12:416鈥?20
    16. McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, Bollen A, Nelson SJ (2007) Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg 106:660鈥?66 CrossRef
    17. McKnight TR, von Dem BM, Vigneron DB, Lu Y, Berger MS, McDermott MW, Dillon WP, Graves EE, Pirzkall A, Nelson SJ (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97:794鈥?02 CrossRef
    18. Miller BL (1991) A review of chemical issues in 1聽H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47鈥?2 CrossRef
    19. Mirbahai L, Wilson M, Shaw CS, McConville C, Malcomson RD, Griffin JL, Kauppinen RA, Peet AC (2011) 1聽H magnetic resonance spectroscopy metabolites as biomarkers for cell cycle arrest and cell death in rat glioma cells. Int J Biochem Cell Biol 43:990鈥?001 CrossRef
    20. Momota H, Narita Y, Matsushita Y, Miyakita Y, Shibui S (2010) p53 abnormality and tumor invasion in patients with malignant astrocytoma. Brain Tumor Pathol 27:95鈥?01 CrossRef
    21. Narayana A, Chang J, Thakur S, Huang W, Karimi S, Hou B, Kowalski A, Perera G, Holodny A, Gutin PH (2007) Use of MR spectroscopy and functional imaging in the treatment planning of gliomas. Br J Radiol 80:347鈥?54 CrossRef
    22. Park I, Bok R, Ozawa T, Phillips JJ, James CD, Vigneron DB, Ronen SM, Nelson SJ (2011) Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13聽C MR metabolic imaging. J Magn Reson Imaging 33:1284鈥?290 CrossRef
    23. Pirzkall A, Li X, Oh J, Chang S, Berger MS, Larson DA, Verhey LJ, Dillon WP, Nelson SJ (2004) 3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys 59:126鈥?37 CrossRef
    24. Quinones-Hinojosa A, Sanai N, Smith JS, McDermott MW (2005) Techniques to assess the proliferative potential of brain tumors. J Neurooncol 74:19鈥?0 CrossRef
    25. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, Rosenblum ML, Mikkelsen T (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51:919鈥?20
    26. Sabatier J, Gilard V, Malet-Martino M, Ranjeva JP, Terral C, Breil S, Delisle MB, Manelfe C, Tremoulet M, Berry I (1999) Characterization of choline compounds with in vitro 1聽H magnetic resonance spectroscopy for the discrimination of primary brain tumors. Invest Radiol 34:230鈥?35 CrossRef
    27. Sankar T, Caramanos Z, Assina R, Villemure JG, Leblanc R, Langleben A, Arnold DL, Preul MC (2008) Prospective serial proton MR spectroscopic assessment of response to tamoxifen for recurrent malignant glioma. J Neurooncol 90:63鈥?6 CrossRef
    28. Schluter M, Stieltjes B, Hahn HK, Rexilius J, Konrad-verse O, Peitgen HO (2005) Detection of tumour infiltration in axonal fibre bundles using diffusion tensor imaging. Int J Med Robot 1:80鈥?6
    29. Shaw EG, Wisoff JH (2003) Prospective clinical trials of intracranial low-grade glioma in adults and children. Neuro Oncol 5:153鈥?60 CrossRef
    30. Shimizu H, Kumabe T, Shirane R, Yoshimoto T (2000) Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 21:659鈥?65
    31. Stadlbauer A, Buchfelder M, Doelken MT, Hammen T, Ganslandt O (2011) Magnetic resonance spectroscopic imaging for visualization of the infiltration zone of glioma. Cen Eur Neurosurg 72:63鈥?9 CrossRef
    32. Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1聽H-MRSI metabolites in gliomas. Neuroimage 23:454鈥?61 CrossRef
    33. Stadlbauer A, Nimsky C, Buslei R, Pinker K, Gruber S, Hammen T, Buchfelder M, Ganslandt O (2007) Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration鈥攊nitial results. Invest Radiol 42:218鈥?23 CrossRef
    34. Udani V, Santarelli J, Yung Y, Cheshier S, Andrews A, Kasad Z, Tse V (2005) Differential expression of angiopoietin-1 and angiopoietin-2 may enhance recruitment of bone-marrow-derived endothelial precursor cells into brain tumors. Neurol Res 27:801鈥?06 CrossRef
    35. Wang S, Fang J, Zhang T, Wang B, Chen J, Li X, Zhang S, Zhang W (2011) Magnetic resonance imaging targeting of intracranial glioma xenografts by Resovist-labeled endothelial progenitor cells. J Neurooncol 105:67-75
    36. Widhalm G, Krssak M, Minchev G, Wohrer A, Traub-Weidinger T, Czech T, Asenbaum S, Marosi C, Knosp E, Hainfellner JA, Prayer D, Wolfsberger S (2011) Value of 1H-magnetic resonance spectroscopy chemical shift imaging for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast-enhancement. J Neurol Neurosurg Psychiatry 82:512鈥?20 CrossRef
    37. Yamahara T, Numa Y, Oishi T, Kawaguchi T, Seno T, Asai A, Kawamoto K (2010) Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging. Brain Tumor Pathol 27:81鈥?7 CrossRef
  • 作者单位:Jun Guo (1)
    Chengjun Yao (2)
    Hong Chen (3)
    Dongxiao Zhuang (2)
    Weijun Tang (4)
    Guang Ren (4)
    Yin Wang (3)
    Jinsong Wu (2)
    Fengping Huang (2)
    Liangfu Zhou (2)

    1. Shanghai Medical College, Fudan University, Shanghai, 200040, China
    2. Glioma Surgery Division, Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, No.12 Central Wulumuqi Road, Jing鈥檃n District, Shanghai, 200040, China
    3. Department of Neuropathology, Fudan University, Shanghai, 200040, China
    4. Department of Radiology, Huashan Hospital, Shanghai, China
文摘
Background The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging (1H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Method Eighteen patients with different grades of glioma were examined using 1H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. Results In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. Conclusions HGG and LGG exhibit different spectroscopic patterns. Using 1H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.