Gross actinide preconcentration using phosphonate-based ligand and cloud point extraction
详细信息    查看全文
  • 作者:Charles Labrecque ; Julien Légaré Lavergne…
  • 关键词:Cloud point extraction ; Actinides ; Alpha spectrometry ; ICP ; MS ; Gross counting
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:308
  • 期:2
  • 页码:527-537
  • 全文大小:1,293 KB
  • 参考文献:1.Kim G, Burnett WC, Horwitz EP (2000) Efficient preconcentration and separation of actinide elements from large soil and sediment samples. Anal Chem 72(20):4882–4887CrossRef
    2.Bouvier-Capely C, Ritt J, Baglan N, Cossonnet C (2004) Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine. Appl Radiat Isot 60(5):629–633CrossRef
    3.Shi Y, Collins R, Broome C (2013) Determination of uranium, thorium and plutonium isotopes by ICP-MS. J Radioanal Nucl Chem 296(1):509–515CrossRef
    4.Fraser MM, Beauchemin D (2001) Effect of concomitant elements on the distribution of ions in inductively coupled plasma mass spectrometry - part 2: polyatomic ions. Spectrochim Acta Part B 56(12):2479–2495CrossRef
    5.Olivares JA, Houk RS (1986) Suppression of analyte signal by various concomitant salts in inductively coupled plasma mass-spectrometry. Anal Chem 58(1):20–25CrossRef
    6.Qiao JX, Hou XL, Miro M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652(1–2):66–84CrossRef
    7.Croudace I, Warwick P, Taylor RN, Dee S (1998) Rapid procedure for plutonium and uranium determination in soils using a borate fusion followed by ion-exchange and extraction chromatography. Anal Chim Acta 371(2–3):217–225CrossRef
    8.Ketterer ME, Hafer KM, Mietelski JW (2004) Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. J Environ Radioact 73(2):183–201CrossRef
    9.Truscott JB, Jones P, Fairman BE, Evans EH (2001) Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry. J Chromatogr A 928(1):91–98CrossRef
    10.Varga Z, Suranyi G, Vajda N, Stefanka Z (2007) Determination of plutonium and americium in environmental samples by inductively coupled plasma sector field mass spectrometry and alpha spectrometry. Microchem J 85(1):39–45CrossRef
    11.Varga Z, Suranyi G, Vajda N, Stefanka Z (2007) Improved sample preparation method for environmental plutonium analysis by ICP-SFMS and alpha-spectrometry. J Radioanal Nucl Chem 274(1):87–94CrossRef
    12.Pilvio R, Bickel M (2000) Actinoid separations by extraction chromatography. Appl Radiat Isot 53(1–2):273–277CrossRef
    13.Vajda N, Kim C-K (2010) Determination of Am-241 isotope: a review of analytical methodology. J Radioanal Nucl Chem 284(2):341–366CrossRef
    14.Burnett WC, Corbett DR, Schultz M, Horwitz EP, Chiarizia R, Dietz M, Thakkar A, Fern M (1997) Pre-concentration of actinide elements from soils and large volume water samples using extraction chromatography. J Radioanal Nucl Chem 226(1–2):121–127CrossRef
    15.Navarro N, Rodriguez L, Alvarez A, Sancho C (2004) Rapid determination of alpha emitters using Actinide resin. Appl Radiat Isot 61(2–3):287–291CrossRef
    16.Croudace IW, Warwick PE, Greenwood R (2006) A novel approach for the rapid decomposition of Actinide (TM) resin and its application to measurement of uranium and plutonium in natural waters. Anal Chim Acta 577(1):111–118CrossRef
    17.Constantinou E, Pashalidis I (2010) Uranium determination in water samples by liquid scintillation counting after cloud point extraction. J Radioanal Nucl Chem 286(2):461–465CrossRef
    18.Constantinou E, Pashalidis I (2011) Thorium determination in water samples by liquid scintillation counting after its separation by cloud point extraction. J Radioanal Nucl Chem 287(1):261–265CrossRef
    19.Labrecque C, Potvin S, Whitty-Leveille L, Lariviere D (2013) Cloud point extraction of uranium using H2DEH[MDP] in acidic conditions. Talanta 107:284–291CrossRef
    20.Madrakian T, Afkhami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71(2):610–614CrossRef
    21.Shemirani F, Kozani RR, Jamali MR, Assadi Y, Milani SMR (2005) Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Sep Sci Technol 40(12):2527–2537CrossRef
    22.Mukherjee P, Padhan SK, Dash S, Patel S, Mishra BK (2011) Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 162(1–2):59–79CrossRef
    23.Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–228CrossRef
    24.Mortada WI, Kenawy IM, Hassanien MM (2015) A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples. Anal Methods. 7(5):2114–2120CrossRef
    25.Bezerra MD, Arruda MAZ, Ferreira SLC (2005) Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: a review. Appl Spectrosc Rev 40(4):269–299CrossRef
    26.Labrecque C, Whitty-Leveille L, Lariviere D (2013) Cloud Point Extraction of Plutonium in Environmental Matrixes Coupled to ICPMS and alpha spectrometry in highly acidic conditions. Anal Chem 85(21):10549–10555CrossRef
    27.Guerin N, Langevin MA, Nadeau K, Labrecque C, Gagne A, Lariviere D (2010) Determination of neptunium in environmental samples by extraction chromatography after valence adjustment. Appl Radiat Isot 68(12):2132–2139CrossRef
    28.Stepinski DC, Herlinger AW (2002) A facile and selective high yield synthesis of symmetric dialkyl-substituted methylenebisphosphonic acids. Synth Commun 32(17):2683–2690CrossRef
    29.McCurdy D, Lin Z, Inn KGW, Bell R, Wagner S, Efurd DW, Steiner R, Duffy C, Hamilton TF, Brown TA, Marchetti AA (2005) Second interlaboratory comparison study for the analysis of Pu-239 in synthetic urine at the mu Bq (similar to 100 aCi) level by mass spectrometry. J Radioanal Nucl Chem 263(2):447–455CrossRef
    30.Kester DR, Duedall IW, Connors DN, Pytkowic RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12(1):176–1000CrossRef
    31.Maxwell SL, Jones VD (2009) Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach. Talanta 80(1):143–150CrossRef
    32.Thakur P, Mulholland GP (2012) Determination of Np-237 in environmental and nuclear samples: a review of the analytical method. Appl Radiat Isot 70(8):1747–1778CrossRef
    33.Labrecque C, Lariviere D (2014) Quantification of rare earth elements using cloud point extraction with diglycolamide and ICP-MS for environmental analysis. Anal Methods. 6(23):9291–9298CrossRef
    34.Herlinger AW, Ferraro JR, Chiarizia R, Horwitz EP (1997) An investigation of P, P’-di(2-ethylhexyl) methanediphosphonic acid and some of its metal complexes. An investigation of P,P’-di(2-ethylhexyl) methanediphosphonic acid and some of its metal complexes. Polyhedron 16(11):1843–1854CrossRef
    35.Chiarizia R, Horwitz EP, Rickert PG, Herlinger AW (1996) Metal extraction by alkyl substituted diphosphonic acids. 1. P, P’-di(2-ethylhexyl) methanediphosphonic acid. Solvent Extr Ion Exch 14(5):773–792CrossRef
    36.Chiarizia R, Horwitz EP, Gatrone RC, Alexandratos SD, Trochimczuk AQ, Crick DW (1993) Uptake of metal-ions by a new chelating ion-exchange resin 2 Acid dependencies of transition and posttransition metal-ions. Solvent Extr Ion Exch 11(5):967–985CrossRef
    37.Koshy L, Saiyad AH, Rakshit AK (1996) The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114. Colloid Polym Sci 274(6):582–587CrossRef
    38.Boulyga SF, Becker JS (2002) Improvement of abundance sensitivity in a quadrupole-based ICP-MS instrument with a hexapole collision cell. J Anal At Spectrom 17(9):1202–1206CrossRef
    39.Kim CS, Kim CK, Lee KJ (2004) Simultaneous analysis of Np-237 and Pu isotopes in environmental samples by ICP-SF-MS coupled with automated sequential injection system. J Anal At Spectrom 19(6):743–750CrossRef
    40.Grate JW, O’Hara MJ, Farawila AF, Douglas M, Haney MM, Petersen SL, Maiti TC, Aardahl CL (2011) Extraction chromatographic methods in the sample preparation sequence for thermal ionization mass spectrometric analysis of plutonium isotopes. Anal Chem 83(23):9086–9091CrossRef
    41.Maxwell SL, Nichols ST (2000) Actinide recovery method for large soil samples. Radioact Radiochem 11(4):46–54
    42.Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion-exchanger-application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310(1):63–78CrossRef
  • 作者单位:Charles Labrecque (1)
    Julien Légaré Lavergne (1)
    Dominic Larivière (1)

    1. Laboratoire de Radioécologie, Département de Chimie, Faculté des Sciences et de Génie, Université Laval, 1045, avenue de la Médecine, Bureau 1250D, Pavillon Alexandre-Vachon, Québec, QC, G1V 0A6, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
A procedure for the effective separation and determination of the most abundant actinides relevant to the nuclear industry (U, Th, Np, Pu and Am) was developed based on cloud point extraction (CPE) using H2DEH[MDP] (P,P-di-(2-ethylhexyl) methanediphosphonic acid) as a ligand. The extractability of actinides with varying concentrations of nitric acid and hydrochloric acid were assessed. The robustness of the method was demonstrated for environmental matrices such as reference materials and spiked liquid samples for the quantification of the gross actinide content. This analytical strategy may replace traditional sample preparation techniques used in radiological methods for gross measurements of radioactivity, and may act as a rapid screening tool in emergency situations. The developed method is a greener alternative to common radiochemical sample preparation techniques such as co-precipitation or evaporation. The formation of a small-volume surfactant-rich phase containing the complexed actinides enables rapid, highly selective and great enrichment of the analytes in this phase. The proposed method shows good extraction and separation yield compared to existing methods, since the surfactant-rich phase is soluble in water and can therefore be redispersed quantitatively in a medium compatible with mass spectrometry while providing fast isolation of the actinide content. Separation of actinides can be achieved after by wet ashing of the surfactant-rich phase obtained by CPE if coupled to the proper radiochemical separation scheme.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.