Real-time communication in IEEE 802.11s mesh networks: simulation assessment considering the interference of non-real-time traffic sources
详细信息    查看全文
  • 作者:Carlos M D Viegas (10)
    Francisco Vasques (10)
    Paulo Portugal (10)
    Ricardo Moraes (11)

    10. IdMEC/INEGI/INESC-Tec - Faculdade de Engenharia da Universidade do Porto
    ; Rua Dr. Roberto Frias ; s/n ; 4200-465 ; Porto ; Portugal
    11. Universidade Federal de Santa Catarina
    ; Rua Pedro Jo茫o Pereira ; 150 ; 88900-000 ; Ararangu谩-SC ; Brazil
  • 关键词:Real ; time communication ; Quality of service ; Wireless mesh networks ; IEEE 802.11s ; Simulation assessment
  • 刊名:EURASIP Journal on Wireless Communications and Networking
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2014
  • 期:1
  • 全文大小:1,534 KB
  • 参考文献:1. Sgora, A, Vergados, D, Chatzimisios, P IEEE 802.11s wireless mesh networks: challenges and perspectives. In: Granelli, F eds. (2009) Mobile Lightweight Wireless Systems, vol. 13. Springer, Berlin, pp. 263-271 2-03819-8_25" target="_blank" title="It opens in new window">CrossRef
    2. Carrano, RC, Magalh茫es, LCS, Saade, DCM, Albuquerque, CVN (2011) IEEE 802.11s multihop MAC: a tutorial. IEEE Commun. Surv. Tutor 13: pp. 52-67 2011.040210.00037" target="_blank" title="It opens in new window">CrossRef
    3. Mase, K (2011) Layer 3 wireless mesh networks: mobility management issues. IEEE Commun. Mag 49: pp. 156-163 2011.5936169" target="_blank" title="It opens in new window">CrossRef
    4. IEEE Standard for Information Technology - Telecommunications and information exchange between systems local and metropolitan area networks - specific requirements part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications / IEEE Std 802.11鈥?012 (Revision of IEEE Std 802.11鈥?007) 2012, 1鈥?793. doi:10.1109/IEEESTD.2012.6178212
    5. Akyildiz, IF, Wang, X, Wang, W (2005) Wireless mesh networks: a survey. Comput. Netw 47: pp. 445-487 2004.12.001" target="_blank" title="It opens in new window">CrossRef
    6. Hamidian, A, K枚rner, U (2009) Distributed reservation-based QoS in ad hoc networks with internet access connectivity. 21st IEEE International Teletraffic Congress. France, Paris, pp. 1-8
    7. Hiertz, GR, Habetha, J, May, P, Weib, E, Bagul, R, Mangold, S (2003) A decentralized reservation scheme for IEEE 802.11 ad hoc networks. 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, vol. 3. pp. 2576-2580
    8. Yang, X, Rosberg, Z, Cao, Z, Liu, RP (2010) Admission control for wireless mesh networks based on active neighbor bandwidth reservations. IEEE International Conference on Communications (ICC). Cape Town, South Africa, pp. 1-6
    9. Moraes, R, Vasques, F, Portugal, P (2008) A 2-tier architecture to support real-time communication in CSMA-based networks. IEEE Network Operations and Management Symposium (NOMS). pp. 1061-1066
    10. Carlson, E, Prehofer, C, Bettstetter, C, Karl, H, Wolisz, A (2006) A distributed end-to-end reservation protocol for IEEE 802.11-based wireless mesh networks. IEEE J. Select. Areas Commun. (J-SAC) 24: pp. 2018-2027 2006.881633" target="_blank" title="It opens in new window">CrossRef
    11. Krasilov, A, Lyakhov, A, Safonov, A (2011) Interference, even with MCCA channel access method in IEEE 802.11s mesh networks. IEEE 8th International Conference on Mobile Adhoc and Sensor Systems (MASS). Valencia, Spain, pp. 752-757
    12. Pinheiro, M, Vasques, F, Sampaio, S, Souto, P (2009) DHT-based cluster routing protocol for IEEE802.11s mesh networks. 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops (SECON Workshops). Rome, Italy, pp. 1-6
    13. Nawab, F, Jamshaid, K, Shihada, B, Ho, PH (2014) Fair packet scheduling in wireless mesh networks. Ad Hoc Netw 13: pp. 414-427 2013.09.002" target="_blank" title="It opens in new window">CrossRef
    14. Jung, WJ, Min, SH, Kim, BG, Choi, HS, Lee, JY, Kim, BC (2013) R-HWMP: Reservation-based HWMP supporting end-to-end QoS in wireless mesh networks. International Conference on Information Networking (ICOIN). pp. 385-390 2013.6496409" target="_blank" title="It opens in new window">CrossRef
    15. Lyakhov, A, Pustogarov, I (2010) Intra-flow interference study in IEEE 802.11s mesh networks. Multiple Access Communications. Lecture Notes in Computer Science, vol. 7642. Springer, Berlin, pp. 127-138
    16. Viegas, CMD, Sampaio, S, Vasques, F, Portugal, P, Souto, P (2012) Assessment of the interference caused by uncontrolled traffic sources upon real-time communication in IEEE 802.11-based mesh networks. 9th IEEE International Workshop on Factory Communication Systems (WFCS). pp. 59-62
    17. Moraes, R, Portugal, P, Vasques, F, Cust贸dio, RF (2010) Assessment of the IEEE 802.11e EDCA protocol limitations when dealing with real-time communication. EURASIP J. Wireless Commun. Netw 2010: pp. 1-14 2010/351480" target="_blank" title="It opens in new window">CrossRef
    18. Moraes, R, Portugal, P, Vasques, F (2006) Simulation analysis of the IEEE 802.11e EDCA protocol for an industrially-relevant real-time communication scenario. IEEE Conference on Emerging Technologies and Factory Automation (ETFA). pp. 202-209
    19. Perkins CE, Belding-Royer E, Das S: Ad hoc on-demand distance vector (AODV) routing. Request for Comments (RFC) 3561, Internet Engineering Task Force (IETF) (July 2003). Available: http://www.rfc-editor.org/rfc/rfc3561.txt [Accessed 20 May 2014]
    20. Bahr, M, Wang, J, Jia, X Routing in wireless mesh networks. In: Zhang, Y, Luo, J, Hu, H eds. (2006) Wireless Mesh Networking: Architectures, Protocols and Standards. Taylor & Francis, New York, USA, pp. 133-134
    21. IEEE standard for local and metropolitan area networks: media access control (MAC) bridges / IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998) 2004, 1鈥?77. doi:10.1109/IEEESTD.2004.94569
    22. Deng, D-J, Chang, R-S (1999) A priority scheme for IEEE 802.11 DCF access method. IEICE Trans. Commun. (Japan) E82-B: pp. 96-102
    23. Hui, J, Devetsikiotis, M (2005) A unified model for the performance analysis of IEEE 802.11e EDCA. IEEE Trans. Commun 53: pp. 1498-1510 2005.855013" target="_blank" title="It opens in new window">CrossRef
    24. Kong, Z-N, Tsang, DHK, Bensaou, B, Gao, D (2004) Performance analysis of IEEE 802.11e contention-based channel access. IEEE J. Select. Areas Commun 22: pp. 2095-2106 2004.836019" target="_blank" title="It opens in new window">CrossRef
    25. Xiao, Y (2005) Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. Wireless Commun 4: pp. 1506-1515 2005.850328" target="_blank" title="It opens in new window">CrossRef
    26. Tao, Z, Panwar, S (2006) Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access. IEEE Trans. Commun 54: pp. 596-603 2006.873066" target="_blank" title="It opens in new window">CrossRef
    27. Xiong, L, Mao, G (2007) Saturated throughput analysis of IEEE 802.11e EDCA. Comput. Netw 51: pp. 3047-3068 2007.01.002" target="_blank" title="It opens in new window">CrossRef
    28. Karamad, E, Ashtiani, F (2009) Performance analysis of IEEE 802.11 DCF and 802.11e EDCA based on queueing networks. IET Commun 3: pp. 871-881 2008.0676" target="_blank" title="It opens in new window">CrossRef
    29. El Masri, M, Abdellatif, S (2009) Managing the virtual collision in IEEE 802.11e EDCA. 8th IFAC International Conference on Fieldbuses and Networks in Industrial and Embedded Systems. pp. 104-109
    30. He, Y, Sun, J, Ma, X, Vasilakos, AV, Yuan, R, Gong, W (2013) Semi-random backoff: towards resource reservation for channel access in wireless LANs. IEEE/ACM Trans. Netw 21: pp. 204-217 2012.2202323" target="_blank" title="It opens in new window">CrossRef
    31. Sanguankotchakorn, T, Gopalasingham, A, Sugino, N (2013) Adaptive channel access mechanism for real time traffic over IEEE 802.11e Wi-Fi network. 4th International Conference on Intelligent Systems Modelling Simulation (ISMS). pp. 486-491
    32. Hwang, G-H, Cho, D-H (2006) Performance analysis on coexistence of EDCA and legacy DCF stations in IEEE 802.11 wireless LANs. IEEE Trans. Wireless Commun 5: pp. 3355-3359 2006.256955" target="_blank" title="It opens in new window">CrossRef
    33. Ni, Q (2005) Performance analysis and enhancements for IEEE 802.11e wireless networks. IEEE Network 19: pp. 21-27 2005.1470679" target="_blank" title="It opens in new window">CrossRef
    34. Calafate, CT, Manzoni, P, Malumbres, MR (2004) Assessing the effectiveness of IEEE 802.11e in multi-hop mobile network environments. pp. 205-212
    35. Xiang, B, Yu-Ming, M (2007) The impact of hidden nodes on MAC layer performance of multi-hop wireless networks using IEEE802.11e protocol. International Conference on Wireless Communications, Networking and Mobile Computing (WiCom). pp. 1479-1483
    36. Xu, K, Gerla, M, Bae, S (2003) Effectiveness of RTS/CTS handshake in {IEEE} 802.11 based ad hoc networks. Ad Hoc Netw 1: pp. 107-123 CrossRef
    37. Bicket, J, Aguayo, D, Biswas, S, Morris, R (2005) Architecture and evaluation of an unplanned 802.11B mesh network. Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, MobiCom. ACM, New York, USA, pp. 31-42
    38. Anastasi, G, Conti, M, Gregori, E IEEE 802.11 in Ad Hoc networks: protocols, performance and open issues. In: Basagni, S, Conti, M, Giordano, S, Stojmenovic, I eds. (2004) Mobile Ad Hoc Networking. IEEE Press 鈥?John Wiley & Sons, New Jersey, USA, pp. 69-116
    39. Braden, R, Zhang, L, Berson, S (1997) Resource reservation protocol (RSVP) - version 1 functional specification. request for comments (RFC) 2205, Internet Engineering Task Force (IETF).
    40. Fielding, R, Gettys, J, Mogul, JC, Frystyk, H, Masinter, L, Leach, PJ, Berners-Lee, T (1999) Hypertext transfer protocol - HTTP/1.1. Request for Comments (RFC) 2616, Internet Engineering Task Force (IETF).
    41. Mah, BA (1997) An empirical model of HTTP network traffic. IEEE Proceedings of 16th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 2. Kobe, Japan, pp. 592-600
    42. Park, C, Shen, H, Marron, JS, Hernandez-Campos, F, Veitch, D (2006) Capturing the elusive poissonity in web traffic. 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). pp. 189-196 2006.17" target="_blank" title="It opens in new window">CrossRef
    43. Aktas, I, King, T, Mengi, C Modeling application traffic. In: Wehrle, K, G眉ne艧, M, Gross, J eds. (2010) Modeling and Tools for Network Simulation. Springer, Berlin, pp. 397-426 2-12331-3_18" target="_blank" title="It opens in new window">CrossRef
    44. Miller LE: Validation of 802.11a/UWB coexistence simulation [online]. Technical report, National Institute of Standards and Technology, Gaithersburg, MD, USA (Oct. 2003). Available: http://www.antd.nist.gov/wctg/manet/docs/coexvalid_031017.pdf [Accessed 10 March 2014]
    45. Pei, G, Henderson, TR (2010) Validation of OFDM error rate model in ns-3 [online].
    46. Lukas, G, Lindhorst, T, Nett, E (2011) Modeling medium utilization for admission control in industrial wireless mesh networks. 30th IEEE Symposium on Reliable Distributed Systems (SRDS). pp. 65-74
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-1499
文摘
With the widespread deployment of wireless mesh networks (WMNs) in industrial environments, real-time (RT) communication may benefit from the multi-hop relaying infrastructure provided by WMNs. However, RT communication must be able to coexist with non-RT traffic sources that will interfere with RT communication. Within this context, this paper assesses the impact of interferences caused by non-RT traffic sources upon RT traffic in IEEE 802.11s mesh networks. Through an extensive set of simulations, we assess the impact of external traffic sources upon a set of RT message streams in different communication scenarios. According to the simulation results, we infer that RT traffic in 802.11s networks may be highly affected by external interferences, and therefore, such interferences must be taken into account when setting-up 802.11s networks. By varying the network load imposed by external interferences, we provide some useful hints about utilization thresholds above which the network can no longer reliably support RT traffic. We also present insights about the setting-up of some network parameters in order to optimize the RT communication performance.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.