Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts
详细信息    查看全文
  • 作者:Kristina Nagy (1)
    Hoon-Ki Sung (1)
    Puzheng Zhang (1)
    Simon Laflamme (2)
    Patrick Vincent (2)
    Siamak Agha-Mohammadi (3)
    Knut Woltjen (1) (4)
    Claudio Monetti (1)
    Iacovos Prodromos Michael (1)
    Lawrence Charles Smith (2)
    Andras Nagy (1) (5)
  • 关键词:Induced pluripotent stem cells ; iPS cells ; Equine ; Horse ; Transposon ; Tetracycline inducible ; Non ; viral ; PiggyBac
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:7
  • 期:3
  • 页码:693-702
  • 全文大小:909KB
  • 参考文献:1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. / Nature, 292, 154鈥?56. CrossRef
    2. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. / Proceedings of the National Academy of Sciences of the United States of America, 78, 7634鈥?638. CrossRef
    3. Ying, Q. L., Wray, J., Nichols, J., et al. (2008). The ground state of embryonic stem cell self-renewal. / Nature, 453, 519鈥?23. CrossRef
    4. Buehr, M., Meek, S., Blair, K., et al. (2008). Capture of authentic embryonic stem cells from rat blastocysts. / Cell, 135, 1287鈥?298. cell.2008.12.007">CrossRef
    5. Demers, S. P., & Smith, L. C. (2010). Derivation, culture, and in vivo developmental capacity of embryonic cell lines from rat blastocysts. / Methods Mol Biol, 597, 179鈥?88. CrossRef
    6. Li, X., Zhou, S. G., Imreh, M. P., Ahrlund-Richter, L., & Allen, W. R. (2006). Horse embryonic stem cell lines from the proliferation of inner cell mass cells. / Stem Cells and Development, 15, 523鈥?31. CrossRef
    7. Saito, S., Ugai, H., Sawai, K., et al. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. / FEBS Letters, 531, 389鈥?96. CrossRef
    8. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. / Nature, 448, 313鈥?17. CrossRef
    9. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell, 126, 663鈥?76. cell.2006.07.024">CrossRef
    10. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. / Cell, 131, 861鈥?72. cell.2007.11.019">CrossRef
    11. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. / Science, 318, 1917鈥?920. CrossRef
    12. Liu, H., Zhu, F., Yong, J., et al. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. / Cell Stem Cell, 3, 587鈥?90. CrossRef
    13. Liao, J., Cui, C., Chen, S., et al. (2009). Generation of induced pluripotent stem cell lines from adult rat cells. / Cell Stem Cell, 4, 11鈥?5. CrossRef
    14. Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., & Nakamura, T. (2010). Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. / Molecular Reproduction and Development, 77, 2. CrossRef
    15. Esteban, M. A., Xu, J., Yang, J., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. / The Journal of Biological Chemistry, 284, 17634鈥?7640. CrossRef
    16. Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., & Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. / Proceedings of the National Academy of Sciences of the United States of America, 106, 10993鈥?0998. CrossRef
    17. Wu, Y., Zhang, Y., Mishra, A., Tardif, S. D., & Hornsby, P. J. (2010). Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. / Stem Cell Res, 4, 180鈥?88. CrossRef
    18. Honda, A., Hirose, M., Hatori, M., et al. (2010). Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. / The Journal of Biological Chemistry, 285, 31362鈥?1369. CrossRef
    19. Nathan, S., De Das, S., Thambyah, A., Fen, C., Goh, J., & Lee, E. H. (2003). Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. / Tissue Engineering, 9, 733鈥?44. CrossRef
    20. Taylor, S. E., Smith, R. K., & Clegg, P. D. (2007). Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? / Equine Veterinary Journal, 39, 172鈥?80. CrossRef
    21. Frisbie, D. D., & Smith, R. K. (2010). Clinical update on the use of mesenchymal stem cells in equine orthopaedics. / Equine Veterinary Journal, 42, 86鈥?9. CrossRef
    22. Wilke, M. M., Nydam, D. V., & Nixon, A. J. (2007). Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. / Journal of Orthopaedic Research, 25, 913鈥?25. CrossRef
    23. Cohen, S., Leshansky, L., Zussman, E., et al. (2010). Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues. / Tissue Engineering. Part A, 16, 3119鈥?137. CrossRef
    24. Kim, D., Kim, C. H., Moon, J. I., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. / Cell Stem Cell, 4, 472鈥?76. CrossRef
    25. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. / Science, 322, 949鈥?53. CrossRef
    26. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. / Science, 322, 945鈥?49. CrossRef
    27. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. / Cell Stem Cell, 4, 381鈥?84. CrossRef
    28. Wang, W., Lin, C., Lu, D., et al. (2008). Chromosomal transposition of PiggyBac in mouse embryonic stem cells. / Proceedings of the National Academy of Sciences of the United States of America, 105, 9290鈥?295. CrossRef
    29. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. / Nature, 458, 771鈥?75. CrossRef
    30. Lin, T., Ambasudhan, R., Yuan, X., et al. (2009). A chemical platform for improved induction of human iPSCs. / Natural Methods, 6, 805鈥?08. CrossRef
    31. Paris, D. B., & Stout, T. A. (2010). Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. / Theriogenology, 74, 516鈥?24. CrossRef
  • 作者单位:Kristina Nagy (1)
    Hoon-Ki Sung (1)
    Puzheng Zhang (1)
    Simon Laflamme (2)
    Patrick Vincent (2)
    Siamak Agha-Mohammadi (3)
    Knut Woltjen (1) (4)
    Claudio Monetti (1)
    Iacovos Prodromos Michael (1)
    Lawrence Charles Smith (2)
    Andras Nagy (1) (5)

    1. Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
    2. Faculty of Veterinary Medicine, Centre de Recherche en Reproduction Animale, Universite de Montreal, Saint-Hyacinthe, Canada
    3. Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
    4. Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606鈥?507, Japan
    5. Department of Molecular Genetics, University of Toronto, Toronto, Canada
文摘
The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.