Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications
详细信息    查看全文
文摘
Nowadays the necessity of having low-voltage operation and low-power consumption is essential for electronic devices, particularly for portable electronics. Therefore, this paper presents a new ultra-low-voltage CMOS topology for a differential difference current conveyor (DDCC) based on the bulk-driven (BD) principle. Due to the use of the BD technique, the proposed circuit is capable of working with a low supply voltage of ±0.3?V and consumes about 18.6?μW with a wide input common-mode range. The proposed BD-DDCC is suitable for ultra-low-voltage low-power applications. As application examples, a voltage-mode multifunction biquadratic filter based on two BD-DDCCs and four grounded passive elements, and a fourth-order band-pass filter are presented. All passive elements of both applications are grounded, which is advantageous for monolithic integration. Also, the input voltage signals are applied directly to the high input impedance terminals, which is a desirable feature for voltage-mode operation. The simulations were performed with PSPICE using the TSMC 0.18?μm n-well CMOS technology to prove the functionality and attractive results of the proposed circuit.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.