High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications
详细信息    查看全文
  • 作者:Fabian Khateb (1)
    Firat Ka?ar (2)
    Nabhan Khatib (1)
    David Kubánek (3)
  • 关键词:Bulk ; driven MOST ; Current ; voltage ; and mixed ; mode applications ; Low ; voltage low ; power analog circuit design ; Universal active element ; Oscillator
  • 刊名:Circuits, Systems, and Signal Processing
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:32
  • 期:2
  • 页码:453-476
  • 全文大小:1,213 KB
  • 参考文献:1. C. Acar, S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron. J. 157-60 (1999)
    2. D. Biolek, CDTA—building block for current-mode analog signal processing, in / Proc ECCTD-3, Krakow, Poland (2003), pp. 397-00
    3. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17, 15-2 (2008)
    4. J.M. Carrillo, G. Torelli, R. Perez-Aloe, F. Duque-Carrillo, 1-V rail-to-rail bulk-driven CMOS OTA with enhanced gain and gain-bandwidth product, in / Proc. ECCTD (2005), pp. 261-64
    5. J.M. Carrillo, G. Torelli, R. Pérez-Aloe, J.M. Valverde, J.F. Duque-Carrillo, Single-pair bulk-driven CMOS input stage: A compact low-voltage analog cell for scaled technologies. Int. VLSI J. 251-57 (2010)
    6. G. Duzenli, Y. Kilic, H. Kuntman, A. Ataman, On the design of low-frequency filters using CMOS OTAs operating in the subthreshold region. Microelectron. J. 45-4 (1999)
    7. L.H. Ferreira, An ultra low-voltage ultra low power rail-to-rail CMOS OTA miller, in / Proc. 2004 IEEE Asia-Pacific Conference on Circuits and Systems (2004), pp. 953-56 CrossRef
    8. A. Guzinski, M. Bialko, J.C. Matheau, Body-driven differential amplifier for application in continuous-time active C-filter, in / Proc. ECCD, Paris, France (1987), pp. 315-19
    9. Y. Haga, I. Kale, Bulk-driven flipped voltage follower, in / Proc. IEEE ISCAS, (2009), pp. 2717-720
    10. N. Herencsár, J. Koton, K. Vrba, I. Lattenberg, New voltage-mode universal filter and sinusoidal oscillator using only single DBTA. Int. J. Electron. 365-79 (2010)
    11. R. Kenneth, S. Willy, / Design of Analog Integrated Circuits and Systems (1994). 898 pp.
    12. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 1-9 (2011)
    13. F. Khateb, N. Khatib, D. Kubánek, Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectron. J. 622-31 (2011)
    14. A. Kumar, G.K. Sharma, Bulk driven circuits for low voltage applications. J. Act. Passiv. Electron. Devices 8, 237-45 (2009)
    15. G.K. Lim, T.H. Teo, A low-power low-voltage amplifier for heart rate sensor, in / Proc. APCCAS (2006), pp. 502-05
    16. S.-W. Pan, C.-C. Chuang, C.-H. Yang, Y.-S. Lai, A novel OTA with dual bulk-driven input stage, in / Proc. ISCAS (2009), pp. 2721-724
    17. G. Raikos, S. Vlassis, 0.8?V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 425-32 (2010)
    18. S.S. Rajput, S.S. Jamuar, Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 24-2 (2002)
    19. F. Rezaei, S.J. Azhari, Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectron. J. 827-36 (2011)
    20. H. Roh, H. Lee, Y. Choi, J. Roh, A 0.8-V 816-nW delta–sigma modulator for low-power biomedical applications. Analog Int. Circuits Signal Process. 101-06 (2010)
    21. J. Rosenfeld, M. Kozak, E.G. Friedman, A bulk-driven CMOS OTA with 68 db DC gain, in / Proc. ICECS (2004), pp. 5-
    22. K. Salama, A. Soliman, Novel MOS-C quadrature oscillator using the differential current voltage conveyor, in / Proc. of the 42nd Midwest Symposium on Circuits and Systems—MWSCAS-9, Las Cruces, USA (1999), pp. 279-82
    23. W. Sansen, Analog design challenges in nanometer CMOS technologies, in / Proc. IEEE Asian Solid-State Circuits Conference (2007), pp. 5-
    24. A. Sedra, K.C. Smith, A second generation current conveyor and its application. IEEE Trans. CT-17, 132-34 (1970)
    25. C. Urban, J.E. Moon, P.R. Mukund, Designing bulk-driven MOSFETs for ultra-low-voltage analogue applications. Semicond. Sci. Technol. 25, 1- (2010) CrossRef
    26. S. Vlassis, G. Raikos, Bulk-driven differential voltage follower. Electron. Lett. 45, 1276-277 (2009) CrossRef
    27. S. Yan, E. Sanchez-Sinencio, Low-voltage analog circuit design techniques. A tutorial IEICE. Trans. Analog Integr. Circuits Syst. 179-96 (2000)
    28. L. Yu-Lung, Y. We-Bin, C. Ting-Sheng, C. Kuo-Hsing, Designing an ultralow-voltage phase-locked loop using a bulk-driven technique. IEEE Trans. Circuits Syst. II 56(5), 339-43 (2009) CrossRef
    29. L. Zhang, X. Zhang, E. El-Masry, A highly linear bulk-driven CMOS OTA for continuous-time filters. Analog Integr. Circuits Signal Process. 229-36 (2008)
    30. Z. Zhu, J. Mo, Y. Yang, A low voltage bulk-driving PMOS cascode current mirror. J. Circuits Syst. 30-3 (2007)
  • 作者单位:Fabian Khateb (1)
    Firat Ka?ar (2)
    Nabhan Khatib (1)
    David Kubánek (3)

    1. Department of Microelectronics, Brno University of Technology, Technicka 10, Brno, Czech Republic
    2. Department of Electrical and Electronics Engineering, Istanbul University, Istanbul, Turkey
    3. Department of Telecommunications, Brno University of Technology, Purkynova 118, Brno, Czech Republic
  • ISSN:1531-5878
文摘
Recently, the demand for low-voltage low-power integrated circuits design has grown dramatically. For battery-operated devices both the supply voltage and the power consumption have to be lowered in order to prolong the battery life. This paper presents an attractive approach to designing a low-voltage low-power high-precision differential-input buffered and external transconductance amplifier, DBeTA, based on the bulk-driven technique. The proposed DBeTA possesses rail-to-rail voltage swing capability at a low supply voltage of ±400 mV and consumes merely 62 μW. The proposed circuit is a universal active element that offers more freedom during the design of current-, voltage-, or mixed-mode applications. The proposed circuit is particularly interesting for biomedical applications requiring low-voltage low-power operation capability where the processing signal frequency is limited to a few kilohertz. An oscillator circuit employing a minimum number of active and passive components has been described in this paper as one of many possible applications. The circuit contains only a single active element DBeTA, two capacitors, and one resistor, which is very attractive for integrated circuit implementation. PSpice simulation results using the 0.18 μm CMOS technology from TSMC are included to prove the unique results.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.