Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies
详细信息    查看全文
  • 作者:John Koren III (1)
    Umesh K. Jinwal (1)
    Zachary Davey (1)
    Janine Kiray (1)
    Karthik Arulselvam (1)
    Chad A. Dickey (1) (2)
  • 关键词:Isomerase ; Tau ; Folding ; Phosphorylation ; Alzheimer's ; Tauopathies
  • 刊名:Molecular Neurobiology
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:44
  • 期:1
  • 页码:65-70
  • 全文大小:184KB
  • 参考文献:1. Oddo S et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409-21 CrossRef
    2. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88(19):8362-366 CrossRef
    3. Roberson ED et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31(2):700-11 CrossRef
    4. Mukaetova-Ladinska EB et al (2000) Alpha-synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 59(5):408-17
    5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239-59 CrossRef
    6. Hardy J et al (2006) Tangle diseases and the tau haplotypes. Alzheimer Dis Assoc Disord 20(1):60-2 CrossRef
    7. Simon-Sanchez J et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41(12):1308-312 CrossRef
    8. Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279(17):17957-7962 CrossRef
    9. Shimura H et al (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279(6):4869-876 CrossRef
    10. Carrettiero DC et al (2009) The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci 29(7):2151-161 CrossRef
    11. Petrucelli L et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703-14 CrossRef
    12. Dickey CA et al (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neurodegener 1:6 CrossRef
    13. Dickey CA et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20(6):753-55
    14. Dickey CA et al (2008) Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci U S A 105(9):3622-627 CrossRef
    15. Dickey CA, Petrucelli L (2006) Current strategies for the treatment of Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 10(5):665-76 CrossRef
    16. Dickey CA et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985-996 CrossRef
    17. Dou F et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100(2):721-26 CrossRef
    18. Luo W et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104(22):9511-516 CrossRef
    19. Jinwal UK et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591-99 CrossRef
    20. Jinwal UK et al (2010) Hsp70 ATPase modulators as therapeutics for Alzheimer's and other neurodegenerative diseases. Mol Cell Pharmacol 2(2):43-6
    21. Jinwal UK et al (2010) Hsc70 rapidly engages tau after microtubule destabilization. J Biol Chem 285(22):16798-6805 CrossRef
    22. Wang CL, Yang HL (2011) Conserved residues in the subunit interface of tau glutathione s-transferase affect catalytic and structural functions. J Integr Plant Biol 53(1):35-3 CrossRef
    23. Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8(11):904-16 CrossRef
    24. Lu PJ et al (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784-88 CrossRef
    25. Romero PR et al (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103(22):8390-395 CrossRef
    26. Galas MC et al (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281(28):19296-9304 CrossRef
    27. Pei H et al (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3):259-66 CrossRef
    28. Harding MW et al (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341(6244):758-60 CrossRef
    29. Sugata H et al (2009) A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 459(2):96-9 CrossRef
    30. Yoshiyama Y et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337-51 CrossRef
    31. Armistead DM et al (1995) Design, synthesis and structure of non-macrocyclic inhibitors of FKBP12, the major binding protein for the immunosuppressant FK506. Acta Crystallogr D Biol Crystallogr 51(Pt 4):522-28 CrossRef
    32. Zhao L et al (2006) FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates. J Med Chem 49(14):4059-071 CrossRef
    33. Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030-038 CrossRef
    34. Davies TH, Sanchez ER (2005) FKBP52. Int J Biochem Cell Biol 37(1):42-7 CrossRef
    35. Chambraud B et al (2010) A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A 107(6):2658-663 CrossRef
    36. Quinta HR et al (2010) Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem 115(3):716-34 CrossRef
    37. Ruan B et al (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A 105(1):33-8 CrossRef
    38. Chambraud B et al (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787-797 CrossRef
    39. Yong W et al (2007) Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282(7):5026-036 CrossRef
    40. Binder EB et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291-305 CrossRef
    41. Nielsen JV et al (2004) Fkbp8: novel isoforms, genomic organization, and characterization of a forebrain promoter in transgenic mice. Genomics 83(1):181-92 CrossRef
    42. Shirane M et al (2008) Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 13(6):635-51 CrossRef
    43. Edlich F et al (2006) The specific FKBP38 inhibitor N-(N',N'-dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia. J Biol Chem 281(21):14961-4970 CrossRef
    44. Fischer G, Bang H, Mech C (1984) Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta 43(10):1101-111
    45. Fischer G et al (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206):476-78 CrossRef
    46. Handschumacher RE et al (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544-47 CrossRef
    47. Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337(6206):473-75 CrossRef
    48. Ortiz M et al (2006) Patterns of evolution of host proteins involved in retroviral pathogenesis. Retrovirology 3:11 CrossRef
    49. Ke H, Huai Q (2004) Crystal structures of cyclophilin and its partners. Front Biosci 9:2285-296 CrossRef
    50. Kim IS et al (2011) A cyclophilin A CPR1 overexpression enhances stress acquisition in / Saccharomyces cerevisiae. Mol Cells 29(6):567-74 CrossRef
    51. Lian Q et al (2001) Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol 167(1):158-65 CrossRef
    52. Barinaga M (1991) The secret of saltiness. Science 254(5032):654-55 CrossRef
    53. Galigniana MD et al (2004) Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex. J Biol Chem 279(53):55754-5759 CrossRef
    54. Barrientos SA et al (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31(3):966-78 CrossRef
    55. Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308(4):795-06 CrossRef
    56. Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61-6 CrossRef
    57. Ratajczak T et al (2009) Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors. Int J Biochem Cell Biol 41(8-):1652-655 CrossRef
    58. Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5(2):76-6 CrossRef
    59. Naylor DJ, Hoogenraad NJ, Hoj PB (1999) Characterisation of several Hsp70 interacting proteins from mammalian organelles. Biochim Biophys Acta 1431(2):443-50 CrossRef
    60. Lane-Guermonprez L et al (2005) Synapsin associates with cyclophilin B in an ATP- and cyclosporin A-dependent manner. J Neurochem 93(6):1401-411 CrossRef
    61. Morot-Gaudry-Talarmain Y (2009) Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic Biol Med 47(12):1715-730 CrossRef
    62. Bergsma DJ et al (1991) The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem 266(34):23204-3214
    63. Ozaki K et al (1996) Cloning, expression and chromosomal mapping of a novel cyclophilin-related gene (PPIL1) from human fetal brain. Cytogenet Cell Genet 72(2-):242-45 CrossRef
    64. Carson R et al (2009) Variation in RTN3 and PPIL2 genes does not influence platelet membrane beta-secretase activity or susceptibility to alzheimer's disease in the northern Irish population. Neuromolecular Med 11(4):337-44 CrossRef
    65. Zeng L et al (2001) Molecular cloning, structure and expression of a novel nuclear RNA-binding cyclophilin-like gene (PPIL4) from human fetal brain. Cytogenet Cell Genet 95(1-):43-7 CrossRef
    66. Nagase T et al (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6(5):337-45 CrossRef
    67. Meza-Zepeda LA et al (2002) Positional cloning identifies a novel cyclophilin as a candidate amplified oncogene in 1q21. Oncogene 21(14):2261-269 CrossRef
    68. Shmueli O et al (2003) GeneNote: whole genome expression profiles in normal human tissues. C R Biol 326(10-1):1067-072 CrossRef
    69. Yanai I et al (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21(5):650-59 CrossRef
    70. Chen S et al (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3(2):118-29 CrossRef
    71. Mi H et al (1996) A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett 398(2-):201-05 CrossRef
    72. Zhou Z et al (2001) Molecular cloning and characterization of a novel peptidylprolyl isomerase (cyclophilin)-like gene (PPIL3) from human fetal brain. Cytogenet Cell Genet 92(3-):231-36 CrossRef
  • 作者单位:John Koren III (1)
    Umesh K. Jinwal (1)
    Zachary Davey (1)
    Janine Kiray (1)
    Karthik Arulselvam (1)
    Chad A. Dickey (1) (2)

    1. Department of Molecular Medicine, USF Health Byrd Alzheimer’s Institute, Tampa, FL, 33613, USA
    2. Departments of Molecular Medicine and Psychiatry, University of South Florida Alzheimer’s Institute, 4001 E. Fletcher Avenue MDC 36, Tampa, FL, 33618, USA
文摘
The Hsp90-associated cis-trans peptidyl-prolyl isomerase—FK506 binding protein 51 (FKBP51)—was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer’s disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.