Homoplastic microinversions and the avian tree of life
详细信息    查看全文
  • 作者:Edward L Braun (1)
    Rebecca T Kimball (1)
    Kin-Lan Han (1)
    Naomi R Iuhasz-Velez (2)
    Amber J Bonilla (1)
    Jena L Chojnowski (1)
    Jordan V Smith (1)
    Rauri CK Bowie (3) (4)
    Michael J Braun (5) (6)
    Shannon J Hackett (3)
    John Harshman (3) (7)
    Christopher J Huddleston (5)
    Ben D Marks (8)
    Kathleen J Miglia (9)
    William S Moore (9)
    Sushma Reddy (10) (3)
    Frederick H Sheldon (8)
    Christopher C Witt (11) (8)
    Tamaki Yuri (1) (12) (5)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:1453KB
  • 参考文献:1. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M, Haussler D, Miller W: Reconstructing contiguous regions of an ancestral genome. / Genome Res 2006, 16:1557鈥?565. CrossRef
    2. Rascol VL, Pontarotti P, Levasseur A: Ancestral animal genomes reconstruction. / Curr Opin Immunol 2007, 19:542鈥?46. CrossRef
    3. Levasseur A, Pontarotti P, Poch O, Thompson JD: Strategies for reliable exploitation of evolutionary concepts in high throughput biology. / Evol Bioinform Online 2008, (4):121鈥?37.
    4. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J: Retroposed elements as archives for the evolutionary history of placental mammals. / PLoS Biol 2006, 4:e91. CrossRef
    5. Boore JL: The use of genome-level characters for phylogenetic reconstruction. / Trends Ecol Evol 2006, 21:439鈥?46. CrossRef
    6. Chaisson MJ, Raphael BJ, Pevzner PA: Microinversions in mammalian evolution. / Proc Natl Acad Sci USA 2006, 103:19824鈥?9829. CrossRef
    7. Krauss V, Th眉mmler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C: Near intron positions are reliable phylogenetic markers: An application to holometabolous insects. / Mol Biol Evol 2008, 25:821鈥?30. CrossRef
    8. Rogozin IB, Thomson K, Cs眉r枚s M, Carmel L, Koonin EV: Homoplasy in genome-wide analysis of rare amino acid replacements: The molecular-evolutionary basis for Vavilov's law of homologous series. / Biol Direct 2008, 3:7. CrossRef
    9. Rokas A, Holland PWH: Rare genomic changes as a tool for phylogenetics. / Trends Ecol Evol 2000, 15:454鈥?59. CrossRef
    10. Hillis DM: SINEs of the perfect character. / Proc Natl Acad Sci USA 1999, 96:9979鈥?981. CrossRef
    11. Avise JC, Robinson TJ: Hemiplasy: a new term in the lexicon of phylogenetics. / Syst Biol 2008, 57:503鈥?07. CrossRef
    12. Pamilo P, Nei M: Relationships between gene trees and species trees. / Mol Biol Evol 1988, 5:568鈥?83.
    13. Moore WS: Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. / Evolution 1995, 49:718鈥?26. CrossRef
    14. Rokas A, Carroll SB: Bushes in the Tree of Life. / PLoS Biol 2006, 4:e352. CrossRef
    15. Koonin EV: The Biological Big Bang model for the major transitions in evolution. / Biol Direct 2007, 2:21. CrossRef
    16. Feuk L, MacDonald JR, Tang T, Carson AR, Li M, Rao G, Khaja R, Scherer SW: Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. / PLoS Genet 2005, 1:e56. CrossRef
    17. Kelchner SA, Wendel JF: Hairpins create minute inversions in non-coding regions of chloroplast DNA. / Curr Genet 1996, 30:259鈥?62. CrossRef
    18. Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun MJ: True and false gharials: A nuclear gene phylogeny of crocodylia. / Syst Biol 2003, 52:386鈥?02. CrossRef
    19. Kim KJ, Lee HL: Widespread occurrence of small inversions in the chloroplast genomes of land plants. / Mol Cells 2005, 19:104鈥?13.
    20. Kimball RT, Braun EL: A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits. / J Avian Biol 2008, 39:438鈥?45.
    21. Catalano SA, Saidman BO, Vilardi JC: Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms. / Cladistics 2009, 25:93鈥?04. CrossRef
    22. Stern DB, Jones H, Gruissem W: Function of plastid mRNA 3' inverted repeats. RNA stabilization and gene-specific protein binding. / J Biol Chem 1989, 264:18742鈥?8750.
    23. Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ, Iacopetta B, Ramsay RG: Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. / Genes Chromosomes Cancer 2006, 45:1143鈥?154. CrossRef
    24. Rott R, Liveanu V, Drager RG, Stern DB, Schuster G: The sequence and structure of the 3'-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. / Plant Mol Biol 1998, 36:307鈥?14. CrossRef
    25. Macdonald SJ, Long AD: Fine scale structural variants distinguish the genomes of Drosophila melanogaster and D. pseudoobscura . / Genome Biol 2006, 7:R67. CrossRef
    26. Chojnowski JL, Kimball RT, Braun EL: Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. / Gene 2008, 410:89鈥?6. CrossRef
    27. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston C, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: A phylogenomic study of birds reveals their evolutionary history. / Science 2008, 320:1763鈥?768. CrossRef
    28. Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski JL, Hackett SJ, Han KL, Kimball RT, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Steppan SJ, Witt CC, Yuri T: Phylogenomic evidence for multiple losses of flight in ratite birds. / Proc Natl Acad Sci USA 2008, 105:13462鈥?3467. CrossRef
    29. Kimball RT, Braun EL, Barker FK, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Han KL, Harshman J, Heimer-Torres V, Holznagel W, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Smith JV, Witt CC, Yuri T: A well-tested set of primers to amplify regions spread across the avian genome. / Mol Phylogenet Evol 2009, 50:654鈥?60. CrossRef
    30. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. / Nucleic Acids Res 2003, 31:3497鈥?500. CrossRef
    31. Katoh M, Kuma M: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. / Nucleic Acids Res 2002, 30:3059鈥?066. CrossRef
    32. Tatusova TA, Madden TL: BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. / FEMS Microbiol Lett 1999, 174:247鈥?50. CrossRef
    33. No茅 L, Kucherov G: YASS: enhancing the sensitivity of DNA similarity search. / Nucleic Acids Res 2005, 33:W540-W543. CrossRef
    34. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. / Nucleic Acids Res 2003, 31:3406鈥?415. CrossRef
    35. Swofford DL: / PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4. Sunderland, MA: Sinauer Associates; 2003.
    36. Han KL, Braun EL, Kimball RT, Reddy S, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: Are transposable element insertions homoplasy free? An examination using the avian tree of life. / Syst Biol 2011, 60:375鈥?86. CrossRef
    37. Stamatakis A: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. / Bioinformatics 2006, 22:2688鈥?690. CrossRef
    38. Kirchhausen T: Clathrin. / Annu Rev Biochem 2000, 69:699鈥?27. CrossRef
    39. Wakeham DE, Abi-Rached L, Towler MC, Wilbur JD, Parham P, Brodsky FM: Clathrin heavy and light chain isoforms originated by independent mechanisms of gene duplication during chordate evolution. / Proc Natl Acad Sci USA 2005, 102:7209鈥?214. CrossRef
    40. Tsirigos A, Rigoutsos I: Human and mouse introns are linked to the same processes and functions through each genome's most frequent non-conserved motifs. / Nucleic Acids Res 2008, 36:3484鈥?493. CrossRef
    41. Bonilla AJ, Braun EL, Kimball RT: Comparative molecular evolution and phylogenetic utility of 3'-UTRs and introns in Galliformes. / Mol Phylogenet Evol 2010, 56:536鈥?42. CrossRef
    42. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, / et al.: The genome of a songbird. / Nature 2010, 464:757鈥?62. CrossRef
    43. Khabar KSA: The AU-rich transcriptome: More than interferons and cytokines, and its role in disease. / J Interferon Cytokine Res 2005, 25:1鈥?0. CrossRef
    44. Chen JM, F茅rec C, Cooper DN: A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: The importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. / Hum Genet 2006, 120:301鈥?33. CrossRef
    45. Ericson PGP, Anderson CL, Britton T, Elzanowki A, Johansson US, K盲llersj枚 M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: Integration of molecular sequence data and fossils. / Biol Lett 2006, 2:543鈥?47. CrossRef
    46. Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D: Mitochondrial genomes and avian phylogeny: Complex characters and resolvability without explosive radiations. / Mol Biol Evol 2007, 24:269鈥?80. CrossRef
    47. Brown JW, Payne RB, Mindell DP: Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al. / Biol Lett 2007, 3:257鈥?59. CrossRef
    48. Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D: Toward resolving deep Neoaves phylogeny: Data, signal enhancement, and priors. / Mol Biol Evol 2009, 26:313鈥?26. CrossRef
    49. Mayr G, Clarke J: The deep divergences of neornithine birds: A phylogenetic analysis of morphological characters. / Cladistics 2003, 19:527鈥?53. CrossRef
    50. Livezey BC, Zusi RL: Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. / Zool J Linn Soc 2007, 149:1鈥?5. CrossRef
    51. Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, Garc铆a-Moreno J, Yuri T, Mindell DP: Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. In / Assembling the tree of life. Edited by: Cracraft J, Donoghue MJ. New York: Oxford University Press; 2004:468鈥?89.
    52. Mayr G: Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds. / J Zool Syst Evol Res 2011, 49:58鈥?6. CrossRef
    53. Poe S, Chubb AL: Birds in a bush: five genes indicate explosive evolution of avian orders. / Evolution 2004, 58:404鈥?15.
    54. Braun EL, Kimball RT: Polytomies, the power of phylogenetic inference, and the stochastic nature of molecular evolution: A comment on Walsh et al. (1999). / Evolution 2001, 55:1261鈥?263.
    55. Sch枚niger M, Waterman MS: A local algorithm for DNA sequence alignment with inversions. / Bull Math Biol 1992, 54:521鈥?36.
    56. Vellozo AF, Alves CER, do Lago AP: Alignment with non-overlapping inversions in O (n 3 )-time. / Lect Notes Comput Sc 2006, 4175:186鈥?96. CrossRef
    57. Ledergerber C, Dessimoz C: Alignments with non-overlapping moves, inversions and tandem duplications in O ( n 4 ) time. / J Comb Optim 2008, 16:263鈥?78. CrossRef
    58. Nishihara H, Maruyama S, Okada N: Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. / Proc Natl Acad Sci USA 2009, 106:5235鈥?240. CrossRef
    59. Mindell DP, Knight A, Baer C, Huddleston CJ: Slow rates of molecular evolution in birds and the metabolic rate and body temperature hypotheses. / Mol Biol Evol 1996, 13:422鈥?26.
    60. Cooper GM, Brudno M, NISC Comparative Sequencing Program, Green ED, Batzoglou S, Sidow A: Quantitative estimates of sequence divergence for comparative analyses of mammalian genomes. / Genome Res 2003, 13:813鈥?20. CrossRef
  • 作者单位:Edward L Braun (1)
    Rebecca T Kimball (1)
    Kin-Lan Han (1)
    Naomi R Iuhasz-Velez (2)
    Amber J Bonilla (1)
    Jena L Chojnowski (1)
    Jordan V Smith (1)
    Rauri CK Bowie (3) (4)
    Michael J Braun (5) (6)
    Shannon J Hackett (3)
    John Harshman (3) (7)
    Christopher J Huddleston (5)
    Ben D Marks (8)
    Kathleen J Miglia (9)
    William S Moore (9)
    Sushma Reddy (10) (3)
    Frederick H Sheldon (8)
    Christopher C Witt (11) (8)
    Tamaki Yuri (1) (12) (5)

    1. Department of Biology, University of Florida, Gainesville, FL, 32611, USA
    2. Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA
    3. Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL, 60605, USA
    4. Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
    5. Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD, 20746, USA
    6. Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, 20742, USA
    7. 4869 Pepperwood Way, San Jose, CA, 95124, USA
    8. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA, 70803, USA
    9. Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
    10. Biology Department, Loyola University Chicago, Chicago, IL, 60626, USA
    11. Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA
    12. Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, 73072, USA
文摘
Background Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.