The developmental transcriptome of the synanthropic fly Chrysomya megacephala and insights into olfactory proteins
详细信息    查看全文
  • 作者:Xiaoyun Wang (1)
    Mei Xiong (1)
    Chaoliang Lei (1)
    Fen Zhu (1)

    1. Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory
    ; Huazhong Agricultural University ; Wuhan ; 430070 ; China
  • 关键词:Chrysomya megacephala ; Developmental transcriptome ; Olfactory proteins ; qPCR
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,316 KB
  • 参考文献:1. Tomberlin JK, Reeves WK, Sheppard DC. First record of / Chrysomya megacephala (Diptera: Calliphoridae) in Georgia, USA. Fla Entomol. 2001;84(2):300. CrossRef
    2. Martinez-Sanchez A, Marcos-Garcia M, Rojo S. First collection of / Chrysomya megacephala (Fabr.) in Europe (Diptera: Calliphoridae). Pan-Pac Entomol. 2001;77(4):240鈥?.
    3. Wells JD. / Chrysomya megacephala (Diptera: Calliphoridae) has reached the continental United States: review of its biology, pest status, and spread around the world. J Med Entomol. 1991;28(3):471鈥?. CrossRef
    4. Castro e CP, Garc铆a M. First record of / Chrysomya megacephala (Fabricius, 1794) (Diptera, Calliphoridae) from Portugal. World. 2009;25:199鈥?00.
    5. Chaiwong T, Srivoramas T, Sueabsamran P, Sukontason K, Sanford MR, Sukontason KL. The blow fly, / Chrysomya megacephala, and the house fly, / Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand. Trop Biomed. 2014;31(2):336鈥?6.
    6. Ferraz ACP, Proenca B, Gadelha BQ, Faria LM, Barbalho MGM, Aguiar-Coelho VM, et al. First Record of Human Myiasis Caused by Association of the Species / Chrysomya megacephala (Diptera: Calliphoridae), / Sarcophaga (Liopygia) / ruficornis (Diptera: Sarcophagidae), and / Musca domestica (Diptera: Muscidae). J Med Entomol. 2010;47(3):487鈥?0. CrossRef
    7. Srivoramas T, Chaiwong T, Sanford MR. Isolation of fungi from adult house fly; / Musca domestica and the blow fly / Chrysomya megacephala in ubon ratchathani province, Northeastern Thailand. Int J Parasitol Res. 2012;4(1):4. CrossRef
    8. Erzinclioglu Y. Forensic entomology and criminal investigations. Police J. 1991;64:5.
    9. Catts EP, Goff ML. Forensic entomology in criminal investigations. Annu Rev Entomol. 1992;37(1):253鈥?2. CrossRef
    10. Yang S-T, Shiao S-F. Oviposition preferences of two forensically important blow fly species, / Chrysomya megacephala and / C. rufifacies (Diptera: Calliphoridae), and implications for postmortem interval estimation. J Med Entomol. 2012;49(2):424鈥?5. CrossRef
    11. Thevan K, Ahmad AH, Rawi CSM, Singh B. Growth of / Chrysomya megacephala (Fabricius) Maggots in a Morgue Cooler. J Forensic Sci. 2010;55(6):1656鈥?. CrossRef
    12. Rezende F, Alonso MA, Souza CM, Thyssen PJ, Linhares AX. Developmental rates of immatures of three / Chrysomya species (Diptera: Calliphoridae) under the effect of methylphenidate hydrochloride, phenobarbital, and methylphenidate hydrochloride associated with phenobarbital. Parasitol Res. 2014;113(5):1鈥?1. CrossRef
    13. Souza CM, Thyssen PJ, Linhares AX. Effect of nandrolone decanoate on the development of three species of / Chrysomya (Diptera: Calliphoridae), flies of forensic importance in Brazil. J Med Entomol. 2011;48(1):111鈥?. CrossRef
    14. Oliveira HG, Gomes G, Morlin Jr JJ, Von Zuben CJ, Linhares AX. The effect of Buscopan庐 on the Development of the Blow Fly / Chrysomya megacephala (F.) (Diptera: Calliphoridae). J Forensic Sci. 2009;54(1):202鈥?. CrossRef
    15. Gabre RA, Adham FK, Chi H. Life table of / Chrysomya megacephala (Fabricius) (Diptera : Calliphoridae). Acta Oecol. 2005;27(3):179鈥?3. CrossRef
    16. Waite G. 4 Pests and Pollinators of Mango. Tropical Fruit Pests and Pollinators: Biology, Economic Importance, Natural Enemies, and Control. CABI. 2002;103.
    17. Anderson D, Sedgley M, Short J, Allwood A. Insect pollination of mango in northern Australia. Crop Pasture Sci. 1982;33(3):541鈥?. CrossRef
    18. Wang Z, Wei D, Yang M, Dan J. The investigation of the varieties of mango insect pollinator in Guangxi and the preliminary observation on the habits and characteristics of the activities of such insects. Guangxi Agricultural Sciences (Chinese). 1999;2:4.
    19. Yang S, Liu Z. Pilot-scale biodegradation of swine manure via / Chrysomya megacephala (Fabricius) for biodiesel production. Appl Energy. 2014;113:385鈥?1. CrossRef
    20. Li Z, Yang D, Huang M, Hu X, Shen J, Zhao Z, et al. / Chrysomya megacephala (Fabricius) larvae: a new biodiesel resource. Appl Energy. 2012;94:349鈥?4. CrossRef
    21. Song C, Yu H, Zhang M, Yang Y, Zhang G. Physicochemical properties and antioxidant activity of chitosan from the blowfly / Chrysomya megacephala larvae. Int J Biol Macromol. 2013;60:347鈥?4. CrossRef
    22. Saurin H. Maggot鈥揃ioconversion Research Program in Indonesia Concept of New Food Resources Results and Applications (Final Report). 2005-2011.
    23. Zhang M, Yu H, Yang YY, Song C, Hu XJ, Zhang GR. Analysis of the Transcriptome of Blowfly / Chrysomya megacephala (Fabricius) Larvae in Responses to Different Edible Oils. PloS one. 2013;8(5):e63168. CrossRef
    24. Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58:373鈥?1. CrossRef
    25. Hansson BS, Stensmyr MC. Evolution of insect olfaction. Neuron. 2011;72(5):698鈥?11. CrossRef
    26. Campobasso CP, Di VG, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120(1鈥?):18鈥?7. CrossRef
    27. Raju AS, Ezradanam V. Pollination ecology and fruiting behaviour in a monoecious species / Jatropha curcas L.(Euphorbiaceae). Curr Sci. 2002;83(11):1395鈥?.
    28. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644-U130.
    29. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494鈥?12. CrossRef
    30. Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat. 2003;31(6):2013鈥?5. CrossRef
    31. Zhang M, Yu H, Yang Y, Song C, Hu X, Zhang G. Analysis of the Transcriptome of Blowfly / Chrysomya megacephala (Fabricius) larvae in responses to different edible oils. PLoS ONE. 2013;8(5):e63168. CrossRef
    32. Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron. 2005;48(3):417鈥?0. CrossRef
    33. Arya GH, Weber AL, Wang P, Magwire MM, Negron YLS, Mackay TFC, et al. Natural variation, functional pleiotropy and transcriptional contexts of odorant binding protein genes in / Drosophila melanogaster. Genetics. 2010;186(4):1475-U1623. CrossRef
    34. Libert S, Zwiener J, Chu X, VanVoorhies W, Roman G, Pletcher SD. Regulation of / Drosophila life span by olfaction and food-derived odors. Science. 2007;315(5815):1133鈥?. CrossRef
    35. Robinson RAS, Kellie JF, Kaufman TC, Clemmer DE. Insights into aging through measurements of the / Drosophila proteome as a function of temperature. Mech Ageing Dev. 2010;131(9):584鈥?0. CrossRef
    36. Anholt RRH, Williams TI. The soluble proteome of the / Drosophila antenna. Chem Senses. 2010;35(1):21鈥?0. CrossRef
    37. Swarup S, Williams TI, Anholt RRH. Functional dissection of Odorant binding protein genes in / Drosophila melanogaster. Genes Brain Behav. 2011;10(6):648鈥?7. CrossRef
    38. Graham LA, Davies PL. The odorant-binding proteins of / Drosophila melanogaster: annotation and characterization of a divergent gene family. Gene. 2002;292(1鈥?):43鈥?5. CrossRef
    39. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. CrossRef
    40. Anholt RRH, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, et al. The genetic architecture of odor-guided behavior in / Drosophila: epistasis and the transcriptome. Nat Genet. 2003;35(2):180鈥?. CrossRef
    41. Zhou S, Stone EA, Mackay TFC, Anholt RRH. Plasticity of the Chemoreceptor Repertoire in / Drosophila melanogaster. Plos Genetics. 2009;5(10):e1000681. CrossRef
    42. Carney GE. A rapid genome-wide response to Drosophila melanogaster social interactions. BMC Genomics. 2007;8.
    43. Fujikawa K, Takahashi A, Nishimura A, Itoh M, Takano-Shimizu T, Ozaki M. Characteristics of genes up-regulated and down-regulated after 24聽h starvation in the head of / Drosophila. Gene. 2009;446(1):11鈥?. CrossRef
    44. Dalton JE, Kacheria TS, Knott SRV, Lebo MS, Nishitani A, Sanders LE, et al. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster. BMC Genomics. 2010;11.
    45. Fujii S, Amrein H. Genes expressed in the / Drosophila head reveal a role for fat cells in sex-specific physiology. EMBO J. 2002;21(20):5353鈥?3. CrossRef
    46. Swarup S, Morozova TV, Sridhar S, Nokes M, Anholt RRH. Modulation of feeding behavior by odorant-binding proteins in / Drosophila melanogaster. Chem Senses. 2014;39(2):125鈥?2. CrossRef
    47. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006;125(1):143鈥?0. CrossRef
    48. Hallem EA, Ho MG, Carlson JR. The molecular basis of odor coding in the / Drosophila antenna. Cell. 2004;117(7):965鈥?9. CrossRef
    49. Wang P, Zhang N, Zhou LL, Si S-Y, Lei CL, Ai H, et al. Antennal and behavioral responses of female / Maruca vitrata to the floral volatiles of / Vigna unguiculata and / Lablab purpureus. Entomol Exp Appl. 2014;152(3):248鈥?7. CrossRef
    50. DeGreeff LE, Furton KG. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem. 2011;401(4):1295鈥?07. CrossRef
    51. Statheropoulos M, Spiliopouiou C, Agapiou A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int. 2005;153(2鈥?):147鈥?5. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Chrysomya megacephala (Fabricius) is a prevalent and synanthropic blowfly which has two sides, for being a pathogenic vector, an efficient pollinator, a promising resource of proteins, lipids, chitosan, biofuel et al., and an important forensic indicator. Moreover olfactory proteins are crucial component to function in related processes. However, the genomic platform of C. megacephala remains relatively unavailable. Developmental transcriptomes of eggs, larvae from 1st instar to before pupa stage and adults from emergence to egg laying period were built by RNA-sequencing to establish sequence background of C. megacephala with special lights on olfactory proteins. Results Clean reads in eggs, larvae and adults were annotated into 59486 transcripts. Transcripts were assembled into 22286, 17180, 18934 and 35900 unigenes in eggs, larvae, adults and the combined datasets, respectively. Unigenes were annotated using Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), GO (Gene Ontology), PFAM (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Orthology). Totally 12196 unigenes were annotated into 51 sub-categories belonging to three main GO categories; 8462 unigenes were classified functionally into 26 categories to KOG classifications; 5160 unigenes were functionally classified into 5 KEGG categories. Moreover, according to RSEM, the number of differentially expressed genes between larvae and eggs, adults and eggs, adults and larvae, and the common differentially expressed genes were 2637, 1804, 2628 and 258, respectively. Among them, 17 odorant-binding proteins (OBPs), 7 chemosensory proteins (CSPs) and 8 ionotropic receptors (IRs) were differently expressed in adults and larvae. Ten were confirmed as significant differentially expressed genes. Furthermore, OBP Cmeg32081-c4 was highly expressed in the female head and Cmeg33593_c0 were up-regulated with the increase of larval age. Conclusions A comprehensive sequence resource with desirable quality was built by comparative transcriptome of eggs, larvae and adults, enriching the genomic platform of C. megacephala. The identified differentially expressed genes would facilitate the understanding of metamorphosis, development and the fitness to environmental change of C. megacephala. OBP Cmeg32081-c4 and Cmeg33593_c0 might play a crucial role in the interactions between olfactory system and biological processes.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.