Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples
详细信息    查看全文
  • 作者:Adriana Giongo (1)
    Jocelyne Favet (2)
    Ales Lapanje (3)
    Kelsey A. Gano (1)
    Suzanne Kennedy (4)
    Austin G. Davis-Richardson (1)
    Christopher Brown (1)
    Andreas Beck (5)
    William G. Farmerie (6)
    Arlette Cattaneo (2)
    David B. Crabb (1)
    Yin-Yin Aung (2)
    Renate Kort (7)
    Hans-Jürgen Brumsack (8)
    Bernhard Schnetger (8)
    William J. Broughton (2) (9)
    Anna A. Gorbushina (10) (2) (9)
    Eric W. Triplett (1)
  • 关键词:Chad ; Deserts ; Eukaryota ; 16S amplicons ; Metagenomics
  • 刊名:Aerobiologia
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:29
  • 期:1
  • 页码:71-84
  • 参考文献:1. Beck, A. (2002). / Selektivit?t der Symbionten schwermetalltoleranter Flechten. Inaugural-dissertation, München, Germany, p. 196. ISBN: 3-9808102-0-8.
    2. Beck, A., & Koop, H. U. (2001). Analysis of the photobiont population in lichens using a single-cell manipulator. / Symbiosis, / 31, 57-7.
    3. Bourrelly, P. (1966). / Les Algues d’Eau Douce. Initiation à la Systématique. Tome I: Les Algues Vertes (p. 511). Paris: éditions N. Boubée & Cie.
    4. Broughton, W. J., & Dilworth, M. J. (1971). Control of leghaemoglobin synthesis in snake beans. / Biochemical Journal, / 125, 1075-080.
    5. Broughton, W. J., & John, C. K. (1979). Rhizobia in tropical legumes III. Experimentation and supply in Malaysia 1927-976. In W. J. Broughton, C. K. John, J. C. Rajaro, & B. Lim (Eds.), / Soil microbiology and plant nutrition (pp. 113-36). Kuala Lumpur: University of Malaya Press.
    6. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. / Nucleic Acids Research, / 37, d141–d145. CrossRef
    7. Daniel, R. (2005). The metagenomics of soil. / Nature Reviews Microbiology, / 3, 470-78. CrossRef
    8. Delmont, T. O., Robe, P., Cecillon, S., Clark, I. M., Constancias, F., Simonet, P., et al. (2011). Accessing microbial diversity for soil metagenomic Studies. / Applied and Environment Microbiology, / 77, 1315-324. CrossRef
    9. Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. / Earth-Science Reviews, / 79, 73-00. CrossRef
    10. Ettl, H., & G?rtner, G. (1995). / Syllabus der Boden-, Luft- und Flechtenalgen (p. 721). Stuttgart: Gustav Fischer Verlag.
    11. Favet, J., Lapanje, A., Giongo, A., Kennedy, S., Davis-Richardson, A. G., Brown, C., et al. (2012). Microbial hitchhikers on intercontinental dust—Catching a lift in Chad. / ISME Journal (in preparation).
    12. Frey, J. (2011). Classification des organismes: Bactéries. Etat juillet 2011. Office fédéral de l’environnement, Berne. L’environnement pratique no 1114, p. 204.
    13. Giles, J. (2005). The dustiest place on earth. / Nature, / 434, 816-19. CrossRef
    14. Giongo, A., Crabb, D. B., Davis-Richardson, A. G., Chauliac, D., Mobberley, J. M., Gano, K. A., et al. (2010a). PANGEA: P ipeline for A nalysis of N ext GE neration A mplicons. / ISME Journal, / 4, 852-61. CrossRef
    15. Giongo, A., Davis-Richardson, A. G., Crabb, D. B., & Triplett, E. W. (2010b). TaxCollector: Tools to modify existing 16S rRNA databases for the rapid classification at six taxonomic levels. / Diversity, / 2, 1015-025. CrossRef
    16. Gorbushina, A. A., Heyrman, J., Dornieden, T., Gonzalez-Delvalle, M., Krumbein, W. E., Laiz, L., et al. (2004). Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). / International Biodeterioration and Biodegradation, / 53, 13-4. CrossRef
    17. Gorbushina, A. A., Kort, R., Schulte, A., Lazarus, D., Schnetger, B., Brumsack, H. J., et al. (2007). Life in Darwin’s dust—Intercontinental transport and survival of microbes in the nineteenth century. / Environmental Microbiology, / 9, 2911-922. CrossRef
    18. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. / Clinical Microbiology Reviews, / 20, 459-77. CrossRef
    19. Griffin, D. W., Gonzalez, C., Teigell, N., Petrosky, T., Northup, D. E., & Lyles, M. (2011). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. / Aerobiologia, / 27, 25-5. CrossRef
    20. Griffin, D. W., Kubilay, N., Kocak, M., Gray, M. A., Borden, T. C., & Shinn, E. A. (2007). Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. / Atmospheric Environment, / 41, 4050-062. CrossRef
    21. Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. / Soil Biology & Biochemistry, / 42, 878-87. CrossRef
    22. Hoshina, R., Iwataki, M., & Imamura, N. (2010). / Chlorella variabilis and / Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of / Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. / Phycological Research, / 58, 188-01. CrossRef
    23. Huang, X., Wang, J., Aluru, S., Yang, S. P., & Hillier, L. (2003). PCAP: A whole-genome assembly program. / Genome Research, / 13, 2164-170. CrossRef
    24. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. / Trends in Ecology & Evolution, / 21, 638-44. CrossRef
    25. Kennedy, S. (2009). Isolation of DNA and RNA from soil using two different methods optimized with Inhibitor Removal Technology? (IRT). / Biotechniques, 19. doi:10.2144/000113290 .
    26. Lapanje, A., Zrimec, A., Drobne, D., & Rupnik, M. (2010). Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod ( / Porcellio scaber) gut. / Environmental Pollution, / 158, 3186-193. CrossRef
    27. Larena, I., Salazar, O., Gonzalez, V., Julian, M. C., & Rubio, V. (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. / Journal of Biotechnology, / 75, 187-94. CrossRef
    28. Pueppke, S. G., & Broughton, W. J. (1999). / Rhizobium sp. NGR234 and / R. fredii USDA257 share exceptionally broad, nested host-ranges. / Molecular Plant-Microbe Interaction, / 12, 293-18. CrossRef
    29. Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. / Applied and Environment Microbiology, / 49, 1-.
    30. Schnetger, B. (1997). Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions. / Fresenius Journal for Analytical Chemistry, / 359, 468-72. CrossRef
    31. Shao, Y.-P. (2008). / Physics and modelling of wind erosion. (p. 452). Berlin: Springer Science?+?Business Media B.V.
    32. Shao, Y.-P., Wyrwoll, K.-H., Chappell, A., Huang, J.-P., Lin, Z.-H., McTainsh, G. H., et al. (2011). Dust cycle: An emerging core theme in Earth system science. / Aeolian Research, / 2, 181-04. CrossRef
    33. Toepfer, I., Favet, J., Schulte, A., Schm?lling, M., Butte, W., Triplett, E. W., Broughton, W. J., & Gorbushina, A. A. (2012). Pathogens as potential hitchhikers on intercontinental dust. / Aerobiologia, / 28, 221-31.
    34. Whittaker, R. H., & Margulis, L. (1978). Protist classification and the kingdoms of organisms. / BioSystems, / 10, 3-8. CrossRef
    35. Winogradsky, M. S. (1925). Etudes sur la microbiologie du sol. / Annales de l’Institut Pasteur, / 34, 1-99.
  • 作者单位:Adriana Giongo (1)
    Jocelyne Favet (2)
    Ales Lapanje (3)
    Kelsey A. Gano (1)
    Suzanne Kennedy (4)
    Austin G. Davis-Richardson (1)
    Christopher Brown (1)
    Andreas Beck (5)
    William G. Farmerie (6)
    Arlette Cattaneo (2)
    David B. Crabb (1)
    Yin-Yin Aung (2)
    Renate Kort (7)
    Hans-Jürgen Brumsack (8)
    Bernhard Schnetger (8)
    William J. Broughton (2) (9)
    Anna A. Gorbushina (10) (2) (9)
    Eric W. Triplett (1)

    1. Department of Microbiology and Cell Science, University of Florida, Museum Road, Gainesville, FL, 32611-0700, USA
    2. Université de Genève, Sciences III, 30 quai Ernest-Ansermet, 1211, Geneve 4, Switzerland
    3. Institute of Physical Biology, Toplarniska 19, 1000, Ljubljana, Slovenia
    4. MO BIO Laboratories, Inc., 2746 Loker Ave. West, Carlsbad, CA, 92010, USA
    5. Department of Lichenology and Bryology, Botanische Staatssammlung München, Menzinger Stra?e 67, 80638, Munich, Germany
    6. Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
    7. Elektronenmikroskopie, Carl von Ossietzky Universit?t, Oldenburg, Carl-von-Ossietzky str. 9-11, 26111, Oldenburg, Germany
    8. Microbiogeochemie, ICBM, Carl von Ossietzky Universit?t, Oldenburg, Carl-von-Ossietzky str. 9-11, 26111, Oldenburg, Germany
    9. Abteilung Material und Umwelt, Bundesanstalt für Material-forschung, und -prüfung, Fabeckstrasse 62 A, 14195, Berlin, Germany
    10. Fachbereich Biologie, Chemie und Pharmazie & Geowissenschaften, Freie Universit?t Berlin, Malteserstrasse 74-100, 12249, Berlin, Germany
  • ISSN:1573-3025
文摘
Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Baha? Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ?00?ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interest.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.