Increased riboflavin production by manipulation of inosine 5-monophosphate dehydrogenase in Ashbya gossypii
详细信息    查看全文
  • 作者:Rubén M. Buey ; Rodrigo Ledesma-Amaro…
  • 关键词:Ashbya gossypii ; Metabolic engineering ; Riboflavin ; Inosine 5-monophosphate dehydrogenase
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:99
  • 期:22
  • 页码:9577-9589
  • 全文大小:2,141 KB
  • 参考文献:Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213-21. doi:10.-107/?S090744490905292- PubMedCentral CrossRef PubMed
    Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47(2-):85-18CrossRef PubMed
    Alonso-García N, Inglés-Prieto A, Sonnenberg A, de Pereda JM (2009) Structure of the calx-β domain of the integrin β4 subunit: insights into function and cation-independent stability. Acta Crystallogr D Biol Crystallogr 65(Pt 8):858-71. doi:10.-107/?S090744490901874- CrossRef PubMed
    Bacher A, Eberhardt S, Richter G (1996) Biosynthesis of riboflavin. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC, pp. 657-64
    Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153-67. doi:10.-146/?annurev.?nutr.-0.-.-53 CrossRef PubMed
    Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22(1):12-3CrossRef PubMed
    Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2014) GenBank. Nucleic Acids Res 42(Database issue):D32–D37. doi:10.-093/?nar/?gkt1030 PubMedCentral CrossRef PubMed
    Braun-Sand SB, Peetz M (2010) Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med Chem 2(1):81-2. doi:10.-155/?fmc.-9.-47 CrossRef PubMed
    Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540-52CrossRef PubMed
    Chong CR, Qian DZ, Pan F, Wei Y, Pili R, Sullivan Jr DJ, Liu JO (2006) Identification of type 1 inosine monophosphate dehydrogenase as an antiangiogenic drug target. J Med Chem 49(9):2677-680. doi:10.-021/?jm051225t CrossRef PubMed
    Cossins EA, Chen L (1997) Folates and one-carbon metabolism in plants and fungi. Phytochemistry 45(3):437-52CrossRef PubMed
    Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304(5668):304-07. doi:10.-126/?science.-095781 CrossRef PubMed
    Dobie F, Berg A, Boitz J, Jardim A (2007) Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Mol Biochem Parasitol 152(1):11-1. doi:10.-016/?j.?molbiopara.-006.-1.-07 CrossRef PubMed
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486-01. doi:10.-107/?S090744491000749- PubMedCentral CrossRef PubMed
    Forster C, Santos MA, Ruffert S, Kramer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274(14):9442-448CrossRef PubMed
    Gan L, Seyedsayamdost M, Shuto S, Matsuda A, Petsko G, Hedstrom L (2003) The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. Biochemistry 42(4):857-63. doi:10.-021/?bi0271401 CrossRef PubMed
    Gattiker A, Rischatsch R, Demougin P, Voegeli S, Dietrich FS, Philippsen P, Primig M (2007) Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists. BMC Genomics 8:9. doi:10.-186/-471-2164-8-9 PubMedCentral CrossRef PubMed
    Gilbert H, Lowe C, Drabble W (1979) Inosine 5-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5-monophosphate. Biochem J 183(3):481-94PubMedCentral CrossRef PubMed
    Gross SS, Levi R (1992) Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 267(36):25722-5729PubMed
    Hedstrom L (2009) IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109(7):2903-928. doi:10.-021/?cr900021w PubMedCentral CrossRef PubMed
    Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR (2011) The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem 18(13):1909-918CrossRef PubMed
    Hyle J, Shaw R, Reines D (2003) Functional distinctions between IMP dehydrogenase genes in providing mycophenolate resistance and guanine prototrophy to yeast. J Biol Chem 278(31):28470-8478. doi:10.-074/?jbc.?M303736200 PubMedCentral Cr
  • 作者单位:Rubén M. Buey (1)
    Rodrigo Ledesma-Amaro
    Mónica Balsera (2)
    José María de Pereda (3)
    José Luis Revuelta (1)

    1. Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
    2. Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
    3. Instituto de Biología Celular y Molecular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii. Keywords Ashbya gossypii Metabolic engineering Riboflavin Inosine 5-monophosphate dehydrogenase
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.