Phase Transitions in Delaunay Potts Models
详细信息    查看全文
  • 作者:Stefan Adams ; Michael Eyers
  • 关键词:Delaunay tessellation ; Gibbs measures ; Random cluster measures ; Percolation ; Phase transitions ; Coarse graining ; Multi ; body interaction
  • 刊名:Journal of Statistical Physics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:162
  • 期:1
  • 页码:162-185
  • 全文大小:822 KB
  • 参考文献:1.Adams, S.: A multi-scale approach for geometry-dependent random-cluster percolation. in preparation (2015)
    2.Adams, S., Collevecchio, A., König, W.: A variational formula for the free energy of an interacting many-particle system. Ann. Probab. 39(2), 683–728 (2011)MATH MathSciNet CrossRef
    3.Benjamini, T., Schramm, O.: Conformal invariance of Voronoi percolation. Commun. Math. Phys. 197, 75–107 (1998)MATH MathSciNet CrossRef ADS
    4.Bertin, E., Billiot, J.M., Drouilhet, R.: Existence of Delaunay pairwise Gibbs point process with superstable component. J. Stat. Phys. 95, 719–744 (1999)MATH MathSciNet CrossRef ADS
    5.Bertin, E., Billiot, J.M., Drouilhet, R.: Continuum percolation in the Gabriel graph. Adv. Appl. Probab. 34(4), 689–701 (2002)MATH MathSciNet CrossRef
    6.Bertin, E., Billiot, J.M., Drouilhet, R.: Phase transition in the nearest-neighbor continuum Potts model. J. Stat. Phys. 114(1–2), 79–100 (2004)
    7.Bollobás, B., Riordan, O.: The critical probability for random Voronoi percolation in the plane is \(1/2\) . Probab. Theory Relat. Fields 136, 417–468 (2006)MATH CrossRef MathSciNet
    8.Bourne, D.P., Peletier, M., Theil, F.: Optimality of the triangular lattice for a particle system with Wasserstein interaction. Commun. Math. Phys. 329, 117–140 (2014)MATH MathSciNet CrossRef ADS
    9.Bricmont, J., Kuroda, K., Lebowitz, J.L.: The structure of Gibbs states and coexistence for non-symmetric continuum Widom–Rowlinson models. Probab. Theory Relat. Field 67, 121–138 (1984)MATH MathSciNet
    10.Chayes, J.T., Chayes, L., Kotecký, R.: The analysis of the Widom-Rowlinson model by Stochastic geometric methods. Commun. Math. Phys. 172, 551–569 (1995)MATH CrossRef ADS MathSciNet
    11.Dereudre, D.: Gibbs Delaunay tessellations with geometric hard core conditions. J. Stat. Phys. 131, 127–151 (2008)MATH MathSciNet CrossRef ADS
    12.Dereudre, D., Drouilhet, R., Georgii, H.O.: Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Relat. Fields 153, 643–670 (2012)MATH MathSciNet CrossRef
    13.Dereudre, D., Georgii, H.O.: Variational characterisation of Gibbs measures with Delaunay triangle interaction. Electron. J. Probab. 14, 2438–2462 (2009)MATH MathSciNet CrossRef
    14.Dereudre, D., Lavancier, F.: Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hard-core interaction. Comput. Stat. Data Anal. 55, 498–519 (2011)MATH MathSciNet CrossRef
    15.Eyers, M.: On Delaunay random-cluster models. PhD thesis University of Warwick (2014). http://​wrap.​warwick.​ac.​uk/​67144/​
    16.Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)MATH CrossRef
    17.Georgii, H.-O.: Large deviations and the equivalence of ensembles for Gibbssian particle systems with superstable interaction. Prob. Theory Relat. Fields 99, 171–195 (1994)MATH MathSciNet CrossRef
    18.Georgii, H.O., Häggström, O.: Phase transition in continuum Potts models. Commun. Math. Phys. 181, 507–528 (1996)MATH CrossRef ADS MathSciNet
    19.Georgii, H.O., Häggström, O., Maes, C.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 18, pp. 1–142. Academic Press, London (2000)CrossRef
    20.Georgii, H.O., Küneth, T.: Stochastic comparison of point random fields. J. Appl. Probab. 34, 868–881 (1997)MATH MathSciNet CrossRef
    21.Grimmett, G.: Potts-models and random-cluster processes with many-body interactions. J. Stat. Phys. 75, 67–121 (1994)MATH MathSciNet CrossRef ADS
    22.Häggström, O.: Markov random fields and percolation on general graphs. Adv. Appl. Probab. 32, 39–66 (2000)MATH CrossRef MathSciNet
    23.Lebowitz, J.L., Mazel, A., Presutti, E.: Liquid-vapor phase transitions for systems with finite range interactions. J. Stat. Phys. 94, 955–1025 (1999)MATH MathSciNet CrossRef ADS
    24.Lebowitz, J.L., Lieb, E.H.: Phase transition in a continuum classical system with finite interactions. Phys. Lett. 39A, 98–100 (1972)CrossRef ADS
    25.Lischinski, D.: Incremental Delaunay triangulation. In: Heckbert, P.S. (ed.) Graphic Gems IV, pp. 47–59. Academic Press, London (1994)CrossRef
    26.Mazel, A., Suhov, Y., Stuhl, I.: A classical WR model with q particle types. arXiv:​1311.​0020v1 (2013)
    27.Merkl, F., Rolles, S.W.W.: Spontaneous breaking of continuous rotational symmetry in two dimensions. Electron. J. Probab. 14, 1705–1726 (2009)MATH MathSciNet CrossRef
    28.Møller, J.: Lectures in random Voronoi tessellations. Springer Lecture Notes in Statistics, vol. 87 (Springer, New York, 1994)
    29.Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970)MATH MathSciNet CrossRef ADS
    30.Ruelle, D.: Existence of a phase transition in a continuous classical system. Phys. Rev. Lett. 27, 1040–1041 (1971)MathSciNet CrossRef ADS
    31.Tassion, V.: Crossing probabilities for Voronoi percolation. arXiv:​1410.​6773v1 (2014)
    32.Widom, B., Rowlinson, J.: New model for the study of liquid-vapour transitions. J. Chem. Phys. 52, 1670–1684 (1970)CrossRef ADS
  • 作者单位:Stefan Adams (1)
    Michael Eyers (1)

    1. Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
We establish phase transitions for certain classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in Bertin et al. (J Stat Phys 114(1–2):79–100, 2004) for the Delaunay graph and in Georgii and Häggström (Commun Math Phys 181:507–528, 1996) for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin–Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies (Dereudre et al. in Probab Theory Relat Fields 153:643–670, 2012) of Gibbs measures for geometry-dependent interactions.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.