Rapid and sensitive detection of potassium ion based on K+-induced G-quadruplex and guanine chemiluminescence
详细信息    查看全文
  • 作者:Jingjing Dong ; Hengzhi Zhao ; Fulin Zhou…
  • 关键词:Guanine ; Chemiluminescence ; G ; quadruplex ; Potassium ion
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:408
  • 期:7
  • 页码:1863-1869
  • 全文大小:594 KB
  • 参考文献:1.Tietz NW. Fundamentals of clinical chemistry. St Loius: Saunders; 1976. p. 875–7.
    2.Modesto KM, Møller JE, Freeman WK, Shub C, Bailey KR, Pellikka PA. Safety of exercise stress testing in patients with abnormal concentrations of serum potassium. Am J Cardiol. 2006;97:1247–9.CrossRef
    3.Song L, Pan X, Shen H, Yu Y. Microflow injection potassium bioassay based on G-quadruplex DNAzyme-enhanced chemiluminescence. Luminescence. 2014;29:1066–73.CrossRef
    4.Chen Z, Tan L, Hu L, Luan Y. Superior fluorescent probe for detection of potassium ion. Talanta. 2015;144:247–51.CrossRef
    5.Verdian-Doghaei A, Housaindokht MR, Abnous K. A fluorescent aptasensor for potassium ion detection-based triple-helix molecular switch. Anal Biochem. 2014;466:72–5.CrossRef
    6.Yu J, Zhang L, Xu X, Liu S. Quantitative detection of potassium ions and adenosine triphosphate via a nanochannel-based electrochemical platform coupled with G-quadruplex aptamers. Anal Chem. 2014;86:10741–8.CrossRef
    7.Liu Y, Li B, Cheng D, Duan X. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine–G-quadruplex complex as sensing element. Microchem J. 2011;99:503–7.CrossRef
    8.He F, Tang Y, Wang S, Li Y, Zhu D. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated Polymer: a platform for homogeneous potassium detection. J Am Chem Soc. 2005;127:12343–6.CrossRef
    9.Kong D, Ma Y, Guo J, Yang W, Shen H. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Anal Chem. 2009;81:2678–84.CrossRef
    10.Kim B, Jung IH, Kang M, Shim H-K, Woo HY. Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J Am Chem Soc. 2012;134:3133–8.CrossRef
    11.Li T, Wang E, Dong S (2009) G-quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection. Chem Commun 580–582
    12.Fan X, Li H, Zhao J, Lin F, Zhang L, Zhang Y, et al. A novel label-free fluorescent sensor for the detection of potassium ion based on DNAzyme. Talanta. 2012;89:57–62.CrossRef
    13.Chen Z, Chen L, Ma H, Zhou T, Li X. Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Biosens Bioelectron. 2013;48:108–12.CrossRef
    14.Wang H, Wang D, Gao M, Wang J, Huang C. Potassium-induced G-quadruplex DNAzyme as a chemiluminescent sensing platform for highly selective detection of K+. Anal Methods. 2014;6:7415–9.CrossRef
    15.Gao Y, Li B. Exonuclease III-assisted cascade signal amplification strategy for label-Free and ultrasensitive chemiluminescence detection of DNA. Anal Chem. 2014;86:8881–7.CrossRef
    16.Gao Y, Li B. G-quadruplex DNAzyme-based chemiluminescence biosensing strategy for ultrasensitive DNA detection: combination of exonuclease III-assisted signal amplification and carbon-nanotubes assisted background reducing. Anal Chem. 2013;85:11494–500.CrossRef
    17.Li B, Wang D, Lv J, Zhang Z. Flow-injection chemiluminescence simultaneous determination of cobalt(II) and copper(II) using partial least squares calibration. Talanta. 2006;69:160–5.CrossRef
    18.Kai M, Kishida S, Sakai K. A chemiluminescence derivatization method for detecting nucleic acids and DNA probes using a trimethoxyphenylglyoxal reagent that recognizes guanine. Anal Chim Acta. 1999;381:155–63.CrossRef
    19.Wang X, Lau C, Kai M, Lu J. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst. 2013;138:2691–7.CrossRef
    20.Miao J, Cao Z, Zhou Y, Lau C, Lu J. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets. Anal Chem. 2008;80:1606–13.CrossRef
    21.Cha T, Cho S, Kim YT, Lee JH. Rapid aptasensor capable of simply diagnosing prostate cancer. Biosens Bioelectron. 2014;62:31–7.CrossRef
    22.Zhao H, Dong J, Zhou F, Li B. G-quadruplex–based homogenous fluorescence platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Microchim Acta. 2015;182:2495–502.CrossRef
    23.Abu-Ghazalah RM, Macgregor Jr RB. Structural polymorphism of the four-repeat oxytricha nova telomeric DNA sequences. Biophys Chem. 2009;141:180–5.CrossRef
    24.Fu L, Li B, Zhang Y. Label-free fluorescence method for screening G-quadruplex ligands. Anal Biochem. 2012;421:198–202.CrossRef
    25.Shapiro R, Cohen BI, Shiuey S-J, Maurer H. On the reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. A new synthesis of ZV-alkylguanines. Biochemistry. 1969;8:238–45.CrossRef
    26.Huang C, Chang H. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun. 2008;44:1461–3.CrossRef
  • 作者单位:Jingjing Dong (1)
    Hengzhi Zhao (1)
    Fulin Zhou (1)
    Baoxin Li (1)

    1. Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
A simple and rapid method for detection of potassium ion (K+) based on a guanine chemiluminescence (CL) system is presented. In this system, one guanine-rich DNA molecule is used as the recognition element. K+ can cause the guanine-rich DNA to form a G-quadruplex conformation, resulting in remarkable quenching of the guanine CL intensity of guanine-rich DNA. The CL intensity of this CL system decreased with increasing K+ concentration, revealing a linear relationship in K+ concentration range from 3 × 10−5 to 1 × 10−3 M. A complete detection process can be accomplished in about 5 min. Other common cations (such as Na+, NH4 +, Mg2+, Ca2+, Zn2+, and Pb2+) did not notably interfere with K+ detection. The mechanism of this strategy is also discussed. The sensing strategy is low cost and simple without the requirement of complex labeling of probe DNA. The scheme is applicable to the detection of other guanine-rich aptamer-binding chemicals or biomolecules.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.