Structural features and thermal properties of W/Cu compounds using tight-binding potential calculations
详细信息    查看全文
  • 作者:Wenyi Ding ; Haiyan He ; Bicai Pan
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:51
  • 期:12
  • 页码:5948-5961
  • 全文大小:2,847 KB
  • 参考文献:1.ITER Organization (2015) ITER, the way to new energy. http://​www.​iter.​org . Accessed 10 Nov 2015
    2.Janeschitza G, Borrassc K, Federicia G, Igitkhanova Y, Kukushkina A, Pacherb HD, Pacherb GW, Sugiharaa M (1995) The ITER divertor concept. J Nucl Mater 220–222:73–88CrossRef
    3.Shimada M, Costley AE, Federici G, Ioki K, Kukushkin AS, Mukhovatov V, Polevoi A, Sugihara M (2005) Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation. J Nucl Mater 337–339:808–815CrossRef
    4.Janeschitz G (2001) Plasma-wall interaction issues in ITER. J Nucl Mater 290–293:1–11CrossRef
    5.Haasz AA, Poon M, Davia JW (1999) The effect of ion damage on deuterium trapping in tungsten. J Nucl Mater 266–269:520–525CrossRef
    6.Venhaus T, Causey R, Doerner Rand Abeln T (2001) Behavior of tungsten exposed to high fluences of low energy hydrogen isotopes. J Nucl Mater 290–293:505–508CrossRef
    7.Shimada T, Kikuchi H, Ueda Y, Sagara A, Nishikawa M (2003) Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation. J Nucl Mater 313–316:204–208CrossRef
    8.Ueda Y, Funabiki T, Shimada T, Fukumoto K, Kurishita H, Nishikawa M (2005) Hydrogen blister formation and cracking behavior for various tungsten materials. J Nucl Mater 337–339:1010–1014CrossRef
    9.Liu YL, Zhang Y, Zhou HB, Lu GH, Liu F, Luo GN (2009) Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys Rev B 79:172103CrossRef
    10.Li WY, Zhang Y, Zhou HB, Jin S, Lu GH (2011) Stress effects on stability and diffusion of H in W: a first-principles study. Nucl Instrum Methods Phys Res Sect B 269:1731–1734CrossRef
    11.Heinola K, Ahlgren T, Nordlund K, Keinonen J (2010) Hydrogen interaction with point defects in tungsten. Phys Rev B 82:094102CrossRef
    12.Zhou HB, Liu YL, Jin S, Zhang Y, Luo GN, Lu GH (2010) Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism. Nucl Fusion 50:025016CrossRef
    13.Ding WY, He HY, Pan BC (2014) Interaction of H with stacking fault in W(111) film: a possible formation mechanism of H bubbles. RSC Adv 4:7030–7034CrossRef
    14.Itoh Y, Takahashi M, Takano H (1996) Design of tungsten/copper graded composite for high heat flux components. Fusion Eng Des 31:279–289CrossRef
    15.Shen W, Li Q, Chang K, Zhou Z, Ge C (2007) Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components. J Nucl Mater 367–370:1449–1452CrossRef
    16.Zhou Z, Song S, Du J, Ge C (2007) High heat flux testing of tungsten plasma facing materials. J Nucl Mater 367–370:1468–1471CrossRef
    17.Kalinin G, Matera R (1998) Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER. J Nucl Mater 258–263:345–350CrossRef
    18.Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K (2002) Plasma facing and high heat flux materials-needs for ITER and beyond. J Nucl Mater 307–311:43–52CrossRef
    19.Marmy P (2004) In-beam mechanical testing of CuCrZr. J Nucl Mater 329–333:188–192CrossRef
    20.Zhang K, Shen WP, Ge CC (2007) Properties of W/Cu FGMs containing 1%TiC or 1%La2O3 prepared using GSUHP. Acta Metall Sin 20:59–64CrossRef
    21.Dietz KJ, Chiocchio S, Antipenkov A, Federici G, Janeschitz G, Martin E, Parker RR, Tivey R (1995) Engineering and design aspects related to the development of the ITER divertor. Fusion Eng Des 27:96–108CrossRef
    22.Hong SH, Kim BK (2003) Fabrication of W-20 wt% Cu composite nanopowder and sintered alloy with high thermal conductivity. Mater Lett 57:2761–2767CrossRef
    23.Benjamin JS (1970) Dispersion strengthened super alloys by mechanical alloying. Metall Trans 1:2943–2951
    24.Wang WF (1997) Effect of tungsten particle size and copper content on working behavior of W-Cu alloy electrodes during electro-discharge machining. Powder Metall 40:295CrossRef
    25.Pintsuk G, Brünings SE, Döring JE, Linke J, Smid I, Xue L (2003) Development of W/Cu—functionally graded materials. Fusion Eng Des 66–68:237–240CrossRef
    26.Kim YD, Oh NL, Oh ST, Moon IH (2001) Thermal conductivity of W-Cu composites at various temperatures. Mater Lett 51:420–424CrossRef
    27.Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498–1524CrossRef
    28.Tang MS, Wang CZ, Chan CT, Ho KM (1996) Environment-dependent tight-binding potential model. Phys Rev B 53:979–982CrossRef
    29.Li Q, Biswas R (1994) Transferable tight-binding model for Si-H systems. Phys Rev B 50:18090–18097CrossRef
    30.Kwon I, Biswas R, Wang CZ, Ho KM, Soukoulis CM (1994) Transferable tight-binding models for silicon. Phys Rev B 49:7242–7250CrossRef
    31.Lekka CE, Bernstein N, Papaconstantopoulos DA, Mehl MJ (2009) Properties of bcc metals by tight-binding total energy simulations. Mater Sci Eng, B 163:8–16CrossRef
    32.Ma N, Cooper R (2006) Tight-binding study of thermal expansions for Mo3Si. J Appl Phys 99:053514CrossRef
    33.Wang CZ, Pan BC, Ho KM (1999) An environment-dependent tight-binding potential for Si. J Phys: Condens Matter 11:2043–2049
    34.Li PF, Pan BC (2012) Transferable tight-binding potential for germanium. J Phys: Condens Matter 24:305802
    35.Ding WY, He HY, Pan BC (2015) Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation. J Mater Sci 50:5684–5693. doi:10.​1007/​s10853-015-9097-7 CrossRef
    36.Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef
    37.Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
    38.Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953CrossRef
    39.Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef
    40.Larose A, Brockhouse BN (1976) Lattice-vibrations in tungsten at 22°C studied by neutron-scattering. Can J Phys 54:1819–1823CrossRef
    41.David RL (2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton
    42.Johnson RA (1983) Point-defect calculations for tungsten. Phys Rev B 27:2014–2018CrossRef
    43.Neklyudov IM, Sadanov EV, Tolstolutskaja GD, Ksenofontov VA, Mazilova TI, Mikhailovskij IM (2008) Interstitial atoms in tungsten: interaction with free surface and in situ determination of formation energy. Phys Rev B 78:115418CrossRef
    44.Rasch KD, Siegel RW, Schultz H (1980) Quenching and recovery investigations of vacancies in tungsten. Philos Mag A 41:91–117CrossRef
    45.Häkkinen H, Manninen M (1992) Computer simulation of disordering and premelting of low-index faces of copper. Phys Rev B 46:1725CrossRef
    46.Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM (2015) Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 5:011041
    47.Sun B, Song J, Yu Y, Zhuang Z, Niu M, Liu Y, Zhang T, Qi Y (2014) Microstructural studies of W-10 wt. %Cu composites prepared by using ultrafine composite powder. Int J Refract Met Hard Mater 45:76–79CrossRef
    48.Misra A, Hoagland RG (2007) Plastic flow stability of metallic nanolaminate composites. J Mater Sci 42:1765–1771. doi:10.​1007/​s10853-006-0895-9 CrossRef
    49.Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100:136102CrossRef
    50.Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210CrossRef
    51.Madsen GKH (2006) Automated search for new thermoelectric materials: the case of LiZnSb. J Am Chem Soc 128:12140–12146CrossRef
    52.Gao X, Uehara K, Klug DD, Patchkovskii S, Tse JS, Tritt TM (2005) Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys Rev B 72:125202CrossRef
  • 作者单位:Wenyi Ding (1)
    Haiyan He (1)
    Bicai Pan (1)

    1. Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
We present an orthogonal tight-binding (TB) potential model for W/Cu binary systems. This model can reasonably predict the electronic structures, elastic properties, and thermodynamics properties of W/Cu systems. Furthermore, by performing the TB Monte Carlo simulations and the TB molecular dynamics simulations, we find that (1) the W(110) surface in the fusion reactor exhibits pre-melting behaviors, (2) W and Cu atoms in a W/Cu binary system prefer to form single element domains, and (3) the interface between a W domain and a Cu domain degrades the transport property of the heat in a W/Cu system significantly.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.