The Formation of Gas Bubbles by Processing of Liquid n-Heptane in the Microwave Discharge
详细信息    查看全文
  • 作者:Yu. A. Lebedev ; A. V. Tatarinov ; I. L. Epstein…
  • 关键词:Microwave discharge ; Discharge in liquid ; n ; Heptane ; 2D modeling ; Two ; phase fluid
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:535-552
  • 全文大小:860 KB
  • 参考文献:1.Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S, Kortshagen U, Boeuf J-P, Sommerer TJ, Kushner MJ, Czarnetzki U, Mason N (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45:253001CrossRef
    2.Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001CrossRef
    3.Yang Y, Cho YI, Fridman A (2012) Plasma discharge in liquid: water treatment and application. CRC Press, Boca Raton
    4.Graham WG, Stalder KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037CrossRef
    5.Hattori Y, Mukasa S, Nomura S, Toyota H (2010) Optimization and analysis of shape of coaxial electrode for microwave plasma in water. J Appl Phys 107:063305CrossRef
    6.Ishijima T, Sugiura H, Saito R, Toyoda H, Sugai H (2010) Efficient production of microwave bubble plasma in water for plasma processing in liquid. Plasma Sources Sci Technol 19:015010CrossRef
    7.Wang B, Sun B, Zhu X, Yan Z, Liu Y, Liu H (2013) Effect of reactor parameters on matching properties of microwave discharge in liquid. J Phys Conf Ser 418:012099CrossRef
    8.Wang B, Sun B, Zhu X, Yan Z, Liu Y, Liu H (2013) Degradation of methylene blue by microwave discharge plasma in liquid. Contrib Plasma Phys 53:697–702CrossRef
    9.Nomura S, Toyota H, Mukasa S, Takahashi Y, Maehara T, Kawashima A, Yamashita H (2008) Discharge characteristics of microwave and high-frequency in liquid plasma in water. Appl Phys Express 1:046002CrossRef
    10.Ishijima T, Hotta H, Sugai H (2007) Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge. Appl Phys Lett 91:121501CrossRef
    11.Ishijima T, Sugiura H, Satio R, Toyada H, Sugai H (2010) Efficient production of microwave bubble plasma in water for plasma processing in liquid. Plasma Sources Sci Technol 19:015010CrossRef
    12.Ishijima T, Nosaka K, Tanaka Y, Uesugi Y, Goto Y, Horibe H (2013) A high-speed photoresist removal process using multibubble microwave plasma under a mixture of multiphase plasma environment. Appl Phys Lett 103:142101CrossRef
    13.Nomura S, Toyota H (2003) Sonoplasma generated by a combination of ultrasonic waves and microwave irradiation. Appl Phys Lett 83:4503CrossRef
    14.Nomura S, Toyota H, Tawara M, Yamashota H (2006) Fuel gas production by microwave plasma in liquid. Appl Phys Lett 88:231502CrossRef
    15.Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T (2006) Microwave plasma in hydrocarbon liquids. Appl Phys Lett 88:211503CrossRef
    16.Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kawashima A (2009) Production of hydrogen in a conventional microwave oven. J Appl Phys 106:073306CrossRef
    17.Toyota H, Nomura S, Takahashi Y, Mukasa S (2008) Submerged synthesis of diamond in liquid alcohol plasma. Diam Relat Mater 17:1902–1904CrossRef
    18.Lebedev YuA, Konstantinov VS, Yablokov MYu, Shchegolikhin AN, Surin NM (2014) Microwave plasma in liquid n-heptane: a study of plasma chemical reaction products. High Energy Chem 48:385–388CrossRef
    19.Buravtsev NN, Konstantinov VS, Lebedev YuA, Mavlyudov TB (2012) Microwave discharge in liquid heptanes. In: Lebedev YA, Yanus K (eds) Microwave discharges: fundamentals and applications (proceedings of the VII international workshop, 10–14 September, Zvenigorod, Russia), Moscow
    20.Toyota H, Nomura S, Mukasa S (2013) A practical electrode for microwave plasma processes. Int J Mater Sci Appl 2(3):83–88
    21.Hattori Y, Mukasa S, Toyota H, Yamashita H, Nomura S (2012) Improvement in preventing metal contamination from an electrode used for generating microwave plasma in liquid–Alumina. Surf Coat Technol 206:2140–2145CrossRef
    22.Camerotto E, De Schepper R, Nikiforov AY (2012) Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane. J Phys D Appl Phys 45:435201CrossRef
    23.Lebedev YuA, Epstein IL, Shakhatov VA, Yusupova EV, Konstantinov VS (2014) Spectroscopy of microwave discharge in liquid C7–C16 hydrocarbons. High Temp 52:319CrossRef
    24.Hamdan A, Marinov I, Rousseau A, Belmonte T (2014) Microdischarge ignition in liquid heptane. IEEE Trans Plasma Sci 42:2616–2617CrossRef
    25.Gidalevich E, Boxman RL (2012) Microwave excitation of submerged plasma bubbles. J Phys D Appl Phys 45:245204CrossRef
    26.Gidalevich E, Boxman RL (2013) Plasma bubbles in a water jet excited by microwave radiation. In: 21st international symposium on plasma chemistry (ISPC 21), Australia
    27.Takeuchi N, Ishii Y, Yasuoka K (2012) Modelling chemical reactions in dc plasma inside oxygen bubbles in water. Plasma Sources Sci Technol 21:015006CrossRef
    28.Tong L (2013) Simulation of the plasma generated in a gas bubble. In: Proceedings of the 2013 COMSOL conference in Boston, USA
    29.Tatarinov AV, Lebedev YA, Epstein IL, Mukhamadiyeva AR (2015) Modeling of the formation of gas bubbles under the action of microwave discharge in liquid n-heptane. High Energy Chem (accepted for publishing)
    30.Sun Y, Beckermann C (2004) Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Phys D 198:281–308CrossRef
    31.Jamet D (2010) Diffuse interface models in fluid mechanics. http://​pmc.​polytechnique.​fr/​mp/​GDR
    32.Jacqmin D (1999) Calculation of two-phase Navier–Stokes flows using phase field modeling. J Comput Phys 155:96CrossRef
    33.Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267CrossRef
    34.Cahn JW, Hilliard JE (1959) Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J Chem Phys 31:688–699CrossRef
    35.Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14:722–733CrossRef
    36.Kosarev IN, Aleksandrov NL, Kindysheva SV, Starikovskaia SM, Starikovskii AYu (2009) Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6 to C5H12 containing mixtures. Combust Flame 156:221CrossRef
    37.Slovetskii DI (1981) Decomposition of hydrocarbons in the glow discharge. In: Smirnov BM (ed) Proceedings of the chemistry of plasma. Energoizdat, Moscow (in Russian)
    38.Morgan database (2014). www.​lxcat.​net . Retrieved 29 Aug 2014
    39.Vacher JR, Jorand F, Blin-Simiand N, Pasquiers S (2010) Electron impact ionization cross-sections of n-heptane. Int J Mass Spectrom 295:78CrossRef
    40.Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317CrossRef
    41.Razer YP (1991) Gas discharge physics. Springer, BerlinCrossRef
    42.McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. Wiley, New York
    43.Encyclopedia of low temperature plasma (2000) ed by Fortov VE 1: II.4.5, Nauka, Moscow (in Russian)
    44.COMSOL 3.5a. http://​www.​comsol.​com
    45.Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149CrossRef
  • 作者单位:Yu. A. Lebedev (1)
    A. V. Tatarinov (1)
    I. L. Epstein (1)
    K. A. Averin (1)

    1. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
Numerical modeling of the process of formation of gas bubbles during initiation of the microwave discharge in liquid n-heptane at atmospheric pressure has been performed. The developed model has an axial symmetry. The model is based on joint solution of the Maxwell equations, Navier–Stokes equation, heat equation, continuity equations for electrons (written in the ambipolar diffusion approximation) and the n-heptane concentration (including its thermal decomposition and dissociation by electron impact) and the Boltzmann equation for free electrons of the plasma. The calculations allowed to describe the dynamics of the formation of gas bubbles in the liquid, to evaluate the role of electron impact in the decomposition of n-heptane, and to estimate the characteristic times of various processes in the system. The results of new experiments are compared with the simulation results. On the basis of this comparison one could explain the presence in the spectra of the discharge only bands of C2. Keywords Microwave discharge Discharge in liquid n-Heptane 2D modeling Two-phase fluid
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.