Viscosity of heptane-toluene mixtures. Comparison of molecular dynamics and group contribution methods
详细信息    查看全文
  • 作者:Ana Milena Velásquez ; Bibian A. Hoyos
  • 关键词:Viscosity ; Molecular simulation ; Heptane ; toluene mixtures ; Group contribution methods
  • 刊名:Journal of Molecular Modeling
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:23
  • 期:2
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:0948-5023
  • 卷排序:23
文摘
Three methods of molecular dynamics simulation [Green–Kubo (G–K), non-equilibrium molecular dynamics (NEMD) and reversed non-equilibrium molecular dynamics (RNEMD)], and two group contribution methods [UNIFAC–VISCO and Grunberg–Nissan (G–N)] were used to calculate the viscosity of mixtures of n-heptane and toluene (known as heptol). The results obtained for the viscosity and density of heptol were compared with reported experimental data, and the advantages and disadvantages of each method are discussed. Overall, the five methods showed good agreement between calculated and experimental viscosities. In all cases, the deviation was lower than 9%. It was found that, as the concentration of toluene increases, the deviation of the density of the mixture (as calculated with molecular dynamics methods) also increases, which directly affects the viscosity result obtained. Among the molecular simulation techniques evaluated here, G–K produced the best results, and represents the optimal balance between quality of result and time required for simulation. The NEMD method produced acceptable results for the viscosity of the system but required more simulation time as well as the determination of an appropriate shear rate. The RNEMD method was fast and eliminated the need to determine a set of values for shear rate, but introduced large fluctuations in measurements of shear rate and viscosity. The two group contribution methods were accurate and fast when used to calculate viscosity, but require knowledge of the viscosity of the pure compounds, which is a serious limitation for applications in complex multicomponent systems.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.