Methylation profiling of DNA in the area of atherosclerotic plaque in humans
详细信息    查看全文
  • 作者:M. S. Nazarenko (12) maria.nazarenko@medgenetics.ru
    V. P. Puzyrev (12)
    I. N. Lebedev (12)
    A. V. Frolov (3)
    O. L. Barbarash (3)
    L. S. Barbarash (3)
  • 关键词:DNA methylation &#8211 ; atherogenesis &#8211 ; microarray “ ; GoldenGate Methylation Cancer Panel I”
  • 刊名:Molecular Biology
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:45
  • 期:4
  • 页码:561-566
  • 全文大小:170.5 KB
  • 参考文献:1. De Flora S., Izzotti A. 2007. Mutagenesis and cardiovascular diseases: Molecular mechanisms, risk factors, and protective factors. Mutat. Res. 621(1–2), 5–17.
    2. Andreassi M.G., Botto N. 2003. Genetic instability, DNA damage, and atherosclerosis. Cell Cycle. 2(3), 224–227.
    3. Casalone R., Granata P., Minelli E., et al. 1991. Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum. Genet. 87(2), 139–143.
    4. Matturri L., Cazzullo A., Turconi P., et al. 2001. Chromosomal alterations in atherosclerotic plaques. Atherosclerosis. 154(3), 755–761.
    5. Hatzistamou J., Kiaris H., Ergazaki M., Spandidos D.A. 1996. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem. Biophys. Res. Commun. 225(1), 186–190.
    6. McCaffrey T.A., Du B., Consigli S., et al. 1997. Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells. J. Clin. Invest. 100(9), 2182–2188.
    7. Flouris G.A., Arvanitis D.A., Parissis J.T., et al. 2000. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. Mol. Cell. Biol. Res. Commun. 4(1), 62–65.
    8. Arvanitis D.A., Flouris G.A., Spandidos D.A. 2005. Genomic rearrangements on VCAM1, SELE, APEG1, and AIF1 loci in atherosclerosis. J. Cell. Mol. Med. 9(1), 153–159.
    9. Lerman B.B., Dong B., Stein K.M., et al. 1998. Right ventricular outflow tract tachycardia due to a somatic cell mutation in G protein subunit alphai2. J. Clin. Invest. 101(12), 2862–2868.
    10. Gollob M.H., Jones D.L., Krahn A.D., et al. 2006. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med. 354(25), 2677–2688.
    11. Gottlieb B., Chalifour L.E., Mitmaker B., et al. 2009. BAK1 gene variation and abdominal aortic aneurysms. Hum. Mutat. 30(7), 1043–1047.
    12. Hatchwell E. 2010. BAK1 gene variation and abdominal aortic aneurysms variants are likely due to sequencing of a processed gene on chromosome 20. Hum. Mutat. 31(1), 108–111.
    13. Lebedev I.N., Nikitina T.V., Tokareva A.G., et al. 2006. Pathogenetic effects of embryonic genome instability in human development. Inform. Vestn. VOGiS. 10(3), 520–530.
    14. Turunen M.P., Aavik E., Yla-Herttuala S. 2009. Epigenetics and atherosclerosis. Biochim. Biophys. Acta. 1790(9), 886–891.
    15. Post W.S., Goldschmidt-Clermont P.J., Wilhide C.C., et al. 1999. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc. Res. 43(4), 985–991.
    16. Zhu S., Goldschmidt-Clermont P.J., Dong C. 2005. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation. 112(9), 1353–1361.
    17. Kim J., Kim J.Y., Song K.S., et al. 2007. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in vitro vascular senescence. Biochim. Biophys. Acta. 1772(1), 72–80.
    18. Zawadzki C., Chatelain N., Delestre M., et al. 2009. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis. 204(2), e4–e14.
    19. Bibikova M., Lin Z., Zhou L., et al. 2006. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16(3), 383–393.
    20. Duncan D.T., Prodduturi N., Zhang B. 2010. WebGestalt2: An updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinform. 11(Suppl. 4), P10.
    21. Chi J.T., Chang H.Y., Haraldsen G., et al. 2003. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. U. S. A. 100(19), 10623–10628.
    22. Orbe J., Fernandez L., Rodriguez J.A., et al. 2003. Different expression of MMPs/TIMP-1 in human atherosclerotic lesions: Relation to plaque features and vascular bed. Atherosclerosis. 170(2), 269–276.
    23. Deng D.X., Tsalenko A., Vailaya A., et al. 2006. Differences in vascular bed disease susceptibility reflect differences in gene expression response to atherogenic stimuli. Circ. Res. 98(2), 200–208.
    24. Zhang J., Burridge K.A., Friedman M.H. 2008. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am. J. Physiol. Heart Circ. Physiol. 295(4), H1556–H1561.
    25. Ideraabdullah F.Y., Vigneau S., Bartolomei M.S. 2008. Genomic imprinting mechanisms in mammals. Mutat. Res. 647(1–2), 77–85.
    26. Han D.K., Khaing Z.Z., Pollock R.A., et al. 1996. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells. J. Clin. Invest. 97(5), 1276–1285.
    27. Li L., Xie J., Zhang M., Wang S. 2009. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim. Biophys. Sinica (Shanghai). 41(6), 464–471.
    28. Young L.E. 2001. Imprinting of genes and the Barker hypothesis. Twin Res. 4(5), 307–317.
    29. Yu W., Clyne M., Khoury M.J., Gwinn M. 2010. Phenopedia and Genopedia: Disease-centered and genecentered views of the evolving knowledge of human genetic associations. Bioinformatics. 26(1), 145–146.
    30. Dzau V.J., Antman E.M., Black H.R., et al. 2006. The cardiovascular disease continuum validated. Clinical evidence of improved patient outcomes: 1. Pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease). Circulation. 114(25), 2850–2870.
    31. Puzyrev V.P. 2008. Genetic view on the phenomenon of combined pathology in human. Med. Genetika. 7(9), 3–9.
    32. Puzyrev V.P., Makeeva O.A., Freidin M.B. 2010. Syntropy, genetic testing and personalized medicine. Personalized Med. 7(4), 399–405.
    33. Pastinen T. 2010. Genome-wide allele-specific analysis: Insights into regulatory variation. Nature Rev. Genet. 11(8), 533–538.
    34. Schneider E., Pliushch G., El Hajj N., et al. 2010. Spatial, temporal, and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res. 38(12), 3880–3890.
    35. Bock C., Walter J., Paulsen M., Lengauer T. 2008. Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping. Nucleic Acids Res. 36(10), e55.
    36. Happle R. 2009. What is paradominant inheritance? J. Med. Genet. 46(9), 648.
    37. Limaye N., Boon L.M., Vikkula M. 2009. From germ-line towards somatic mutations in the pathophysiology of vascular anomalies. Hum. Mol. Genet. 18(R1), R65–R74.
    38. bioinfo.vanderbilt.edu/webgestalt.
    39. www.geneontology.org.
    40. www.hugenavigator.net.
  • 作者单位:1. Research Institute of Medical Genetics, Siberian Branch, Russian Academy of Medical Sciences, Ushaika str. 10, Tomsk, 634050 Russia2. Siberian State Medical University, Moskovskii trakt 2, Tomsk, 634050 Russia3. Research Institute for Complex Studying of Cardiovascular Diseases, Russian Academy of Medical Sciences, Sosnovyi Bulvar 6, Kemerovo, 650002 Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Biochemistry
    Human Genetics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3245
文摘
Mutation theory of atherogenesis proved by “loss of heterozygosity” and microsatellite instability in the area of atherosclerotic plaques is complemented by data on epigenetic variability of genetic loci involved in the pathologic process. However, only recently large-scale analysis of epigenetic modifications in the human genome became possible. For the first time, the quantitative microarray-based methylation profiling of 1505 CpG-sites in 807 genes was performed in atherosclerotic plaques of aorta and carotid artery from humans using the GoldenGate Methylation Cancer Panel I (Illumina, United States). One hundred and three (7%) CpG-sites in 90 (11%) genes were differentially methylated between tissue samples. The most pronounced differences in DNA methylation levels were registered for a site located in CpG-island of the imprinted gene H19. By comparing 90 genes that were differentially methylated between tissue samples in our study, 10 genes (ICAM1, GSTM1, IGFBP1, POMC, APOA1, IL1RN, INS, LTA, MMP3, THBS2) were overlapped with data in the Human Genome Epidemiology Network (HuGENet), in which they were identified as candidates for cardiovascular disease continuum.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.