Fundamental modes in waveguide pipe twisted by saturated double-well potential
详细信息    查看全文
  • 作者:Gui-Hua Chen ; Hong-Cheng Wang ; Zhao-Pin Chen ; Yan Liu
  • 刊名:Frontiers of Physics
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:12
  • 期:1
  • 全文大小:2,228 KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
  • 卷排序:12
文摘
We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.KeywordsTwisted double-well waveguidesaturated nonlinear potentialsymmetry breakingsymmetry recovery
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.