Reproducibility of diffusion tensor imaging in normal subjects: an evaluation of different gradient sampling schemes and registration algorithm
详细信息    查看全文
  • 作者:Xin Liu (1)
    Yong Yang (3)
    Jubao Sun (2)
    Gang Yu (4)
    Jin Xu (1)
    Chen Niu (5)
    Hongjun Tian (6)
    Pan Lin (1)
  • 关键词:Diffusion tensor imaging ; Reproducibility ; Diffusion ; encoding directions ; Registration
  • 刊名:Neuroradiology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:56
  • 期:6
  • 页码:497-510
  • 全文大小:3,708 KB
  • 参考文献:1. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259-67. doi:10.1016/s0006-3495(94)80775-1 CrossRef
    2. Qiu D, Tan LH, Zhou K, Khong PL (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. NeuroImage 41(2):223-32. doi:10.1016/j.neuroimage.2008.02.023 CrossRef
    3. Wozniak JR, Lim KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30(6):762-74. doi:10.1016/j.neubiorev.2006.06.003 CrossRef
    4. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, Miller DH, Matthews PM, Thompson AJ (2006) Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain: J Neurol 129(Pt 7):1859-871. doi:10.1093/brain/awl100 CrossRef
    5. Meoded A, Kwan JY, Peters TL, Huey ED, Danielian LE, Wiggs E, Morrissette A, Wu T, Russell JW, Bayat E, Grafman J, Floeter MK (2013) Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dement Geriatr Cogn Dis Extra 3(1):233-50. doi:10.1159/000353456 CrossRef
    6. Sato K, Aoki S, Iwata NK, Masutani Y, Watadani T, Nakata Y, Yoshida M, Terao Y, Abe O, Ohtomo K (2010) Diffusion tensor tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis. Neuroradiology 52(8):729-33 CrossRef
    7. Blaschek A, Keeser D, Muller S, Koerte IK, Sebastian Schroder A, Muller-Felber W, Heinen F, Ertl-Wagner B (2013) Early white matter changes in childhood multiple sclerosis: a diffusion tensor imaging study. AJNR Am J Neuroradiol 34(10):2015-020. doi:10.3174/ajnr.A3581 CrossRef
    8. Temel S, Kekligkoglu HD, Vural G, Deniz O, Ercan K (2013) Diffusion tensor magnetic resonance imaging in patients with multiple sclerosis and its relationship with disability. Neuroradiol J 26(1):3-7
    9. Boespflug EL, Storrs JM, Allendorfer JB, Lamy M, Eliassen JC, Page S (2011) Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study. Brain Imaging Behav. doi:10.1007/s11682-011-9144-1
    10. van der Aa NE, Northington FJ, Stone BS, Groenendaal F, Benders MJ, Porro G, Yoshida S, Mori S, de Vries LS, Zhang J (2013) Quantification of white matter injury following neonatal stroke with serial DTI. Pediatr Res 73(6):756-62. doi:10.1038/pr.2013.45 CrossRef
    11. Wheeler-Kingshott CA, Cercignani M (2009) About "axial" and "radial" diffusivities. Magn Reson Med: Off J Soc Magn Reson Med / Soc Magn Reson Med 61(5):1255-260. doi:10.1002/mrm.21965 CrossRef
    12. Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage 55(4):1454-460. doi:10.1016/j.neuroimage.2011.01.007 CrossRef
    13. Metwalli NS, Benatar M, Nair G, Usher S, Hu X, Carew JD (2010) Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 1348:156-64. doi:10.1016/j.brainres.2010.05.067 CrossRef
    14. Seal ML, Yucel M, Fornito A, Wood SJ, Harrison BJ, Walterfang M, Pell GS, Pantelis C (2008) Abnormal white matter microstructure in schizophrenia: a voxelwise analysis of axial and radial diffusivity. Schizophr Res 101(1-):106-10. doi:10.1016/j.schres.2007.12.489 CrossRef
    15. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429-436 CrossRef
    16. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M (2011) Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 53(5):367-72 CrossRef
    17. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr (2012) A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage 60(2):1127-138. doi:10.1016/j.neuroimage.2011.12.062 CrossRef
    18. Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. NeuroImage 36(4):1123-138. doi:10.1016/j.neuroimage.2007.02.056 CrossRef
    19. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27(8):1776-781
    20. Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18(6):671-79 CrossRef
    21. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo Study. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 51(4):807-15. doi:10.1002/mrm.20033 CrossRef
    22. Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging JMRI 13(5):769-80 CrossRef
    23. Heiervang E, Behrens TE, Mackay CE, Robson MD, Johansen-Berg H (2006) Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage 33(3):867-77. doi:10.1016/j.neuroimage.2006.07.037 CrossRef
    24. Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2):524-32. doi:10.1016/j.neuroimage.2004.08.050 CrossRef
    25. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487-505. doi:10.1016/j.neuroimage.2006.02.024 CrossRef
    26. Gee J, Alexander D (2006) Diffusion-tensor image registration. In: Weickert J, Hagen H (eds) Visualization and processing of tensor fields. Mathematics and visualization. Springer, Berlin, Heidelberg, pp 327-42. doi:10.1007/3-540-31272-2_20 CrossRef
    27. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 10(5):764-85. doi:10.1016/j.media.2006.06.004 CrossRef
    28. Schmithorst VJ, Holland SK, Dardzinski BJ (2008) Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp 29(6):696-10. doi:10.1002/hbm.20431 CrossRef
    29. Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC (2002) Spatial normalization and averaging of diffusion tensor MRI data sets. NeuroImage 17(2):592-17 CrossRef
    30. Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process: Publ IEEE Signal Proc Soc 5(10):1435-447. doi:10.1109/83.536892 CrossRef
    31. Wang Y, Gupta A, Liu Z, Zhang H, Escolar ML, Gilmore JH, Gouttard S, Fillard P, Maltbie E, Gerig G, Styner M (2011) DTI registration in atlas based fiber analysis of infantile Krabbe disease. NeuroImage 55(4):1577-586. doi:10.1016/j.neuroimage.2011.01.038 CrossRef
    32. Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, Westin CF (2003) Spatial normalization of diffusion tensor MRI using multiple channels. NeuroImage 20(4):1995-009 CrossRef
    33. Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. NeuroImage 51(4):1384-394. doi:10.1016/j.neuroimage.2010.03.046 CrossRef
    34. Brown WJ, Trost SG, Bauman A, Mummery K, Owen N (2004) Test-retest reliability of four physical activity measures used in population surveys. J Sci Med sport / Sports Med Aust 7(2):205-15 CrossRef
    35. Marenco S, Rawlings R, Rohde GK, Barnett AS, Honea RA, Pierpaoli C, Weinberger DR (2006) Regional distribution of measurement error in diffusion tensor imaging. Psychiatry Res 147(1):69-8. doi:10.1016/j.pscychresns.2006.01.008 CrossRef
    36. Papinutto ND, Maule F, Jovicich J (2013) Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables. Magn Reson Imaging 31(6):827-39. doi:10.1016/j.mri.2013.03.004 CrossRef
    37. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26(8):1215-227. doi:10.1016/j.neurobiolaging.2004.09.017 CrossRef
    38. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage 26(4):1164-173. doi:10.1016/j.neuroimage.2005.03.016 CrossRef
    39. Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 34(1):61-3. doi:10.1016/j.neuroimage.2006.08.032 CrossRef
    40. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WM, Barker PB, Mori S, Horska A (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. NeuroImage 34(2):733-42. doi:10.1016/j.neuroimage.2006.09.020 CrossRef
    41. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40(3):1044-055. doi:10.1016/j.neuroimage.2007.12.053 CrossRef
    42. Morioka S, Morimoto M, Yamada K, Hasegawa T, Morita T, Moroto M, Isoda K, Chiyonobu T, Imamura T, Nishimura A (2013) Effects of chemotherapy on the brain in childhood: diffusion tensor imaging of subtle white matter damage. Neuroradiology 55(10):1251-257 CrossRef
    43. Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 46(6):1174-188 CrossRef
    44. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC, Mori S (2007) Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. J Magn Reson Imaging JMRI 26(3):756-67. doi:10.1002/jmri.21053 CrossRef
    45. Seo Y (2013) Effects of different field strengths, gradient directions, and acquisitions on fractional anisotropy in diffusion tensor imaging: a tract‐based spatial statistics study. Concepts Magn Reson Part B: Magn Reson Eng 43(1):41-8 CrossRef
    46. Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, Dant CC, Reiss AL (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15(12):1848-854. doi:10.1093/cercor/bhi062 , New York, NY : 1991 CrossRef
  • 作者单位:Xin Liu (1)
    Yong Yang (3)
    Jubao Sun (2)
    Gang Yu (4)
    Jin Xu (1)
    Chen Niu (5)
    Hongjun Tian (6)
    Pan Lin (1)

    1. Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shaanxi, 710049, People’s Republic of China
    3. School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, People’s Republic of China
    2. MRI Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
    4. School of Info-physics and Geomatics Engineering, Central South University, Changsha, People’s Republic of China
    5. Department of Medical Imaging, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, People’s Republic of China
    6. Nanjing Fullshare Superconducting Technology Company Limited, Nanjing, People’s Republic of China
  • ISSN:1432-1920
文摘
Introduction Diffusion tensor imaging (DTI) is very useful for investigating white matter integrity in ageing and neurological disorders; thus, evaluating its reproducibility under different acquisition protocols and analysis methods may assist in the design of clinical studies. Methods To measure the reproducibility of DTI in normal subjects, this study include (1) depicting the reproducibility of DTI measurements in commonly used regions-of-interest analysis by intraclass correlation coefficient (ICC) and coefficient of variation (CV), (2) evaluating and comparing inter and intrasession test-retest reproducibility, and (3) illustrating the effect of the number of diffusion-encoding directions (NDED) and registration algorithms on measurement reproducibility. Results DTI measurements exhibit high reproducibility, with overall (430/480) ICC?≥-.70, (478/480) within-subject CV (CVws) ?0.00?% and between-subject CV (CVbs) ranging from 1.32 to 13.63?%. Repeated measures ANOVAs and paired t tests were conducted to compare inter and intrasession reproducibility with different diffusion sampling schemes and registration algorithms. Our results also confirmed that increasing the NDED could improve the accuracy and reproducibility of DTI measurements. In addition, we compared reproducibility indices that were derived using different registration algorithms, and a tensor-based deformable registration yielded the most reproducible results. Finally, we found that increasing the NDED could reduce the difference between the reproducibility of measurement derived using different registration algorithms and between the reproducibility of intersession and intrasession. Conclusion Our results suggest that the choice of DTI acquisition protocol and post-processing methods can influence the accurate estimation and reproducibility of DTI measurements and should be considered carefully for clinical applications.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.