Energy Detector in Ultra Wideband Systems Using Phase Compensation Technique
详细信息    查看全文
  • 作者:Dariush Abbasi-Moghadam (1)
    S. Mohammad Mirhoseini-Nezhad (1)
  • 关键词:Phase compensation ; UWB ; Energy detector ; PPM ; Integration time
  • 刊名:Wireless Personal Communications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:79
  • 期:3
  • 页码:1609-1620
  • 全文大小:793 KB
  • 参考文献:1. Abbasi-Moghadam, D., & Vakily, V. T. (2010). Channel characterization of time reversal UWB communication systems. / Annals of Telecommunications, / 65, 601-14. No. 9-0. CrossRef
    2. Liang, Z., Jin, L., & Dong, X. (June 2011). Downlink multiple access schemes for transmitted reference pulse cluster UWB systems. / International Journal of Communication Systems, / 24(6), 732-44.
    3. Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. / IEEE Transactions on Microwave Theory and Techniques, / 54(4), 1754-761. CrossRef
    4. Khan, M. G., Sallberg, B., Nordberg, J., & Claesson, I. (2009). Non-coherent detection of impulse radio UWB signals based on fourth order statistics. In / IEEE international conference on ultra-wideband, ICUWB 2009.
    5. Abbasi-Moghadam, D., & Vakily, V. T. (2012). A SIMO one bit time reversal for UWB communication systems. / EURASIP Journal on Wireless Communications and Networking 1-:113.
    6. Wu, J., Xiang, H., & Tian, Z. (2006). Weighted noncoherent receivers for UWB PPM signals. / IEEE Communications Letters, / 10(9), 655-57. CrossRef
    7. Abbasi-Moghadam, D., Mohebbi, A., & Mohades, Z. (2014). Performance analysis of time reversal UWB communication with non-coherent energy detector. / Wireless Personal Communication. doi:10.1007/s11277-014-1638-x .
    8. Mohebbi, A., Abbasi-Moghadam, D., & Vakili V. T. (2011). Noncoherent weighted detection for time reversal UWB systems: Energy and kurtosis detectors. / International Review of Communication, Antenna and Propagation, 1(2), 174-82.
    9. Taghipour, J., Vakil, V. T., & Abbasi-Moghadam, D. (2012). Comparison of kurtosis and fourth power detectors with applications to IR-UWB OOK systems. / International Journal of Communications, Network and System Sciences, / 5(1), 43-9.
    10. Fink, M., Prada, C., Wu, F., & Cassereau, D. (1989). Self focusing in inhomogeneous media with time reversal acoustic mirrors. In / IEEE Ultrasonics Symposium (Vol. 1, pp. 681-86). Montreal.
    11. Oestges, C., Kim, A. D., Papanicolaou, G., & Paulraj, A. J. (2005). Characterization of space-time focusing in time-reversed random fields. / IEEE Transactions on Antennas Propagation, / 53(1), 283-93. CrossRef
    12. Tourin, A., Derode, A., & Fink, M. (2001). Sensitivity to perturbations of a time-reversed acoustic wave in a multiple scattering medium. / Phyics Review Letters, / 87(27), 24301-1-4301-4.
    13. Ackroyd, M. H., & Ghani, F. (1973). Optimum mismatched filters for sidelobe suppression. / IEEE Transactions on Aerospace and Electronic Systems, / 9, 214-18. CrossRef
    14. Dezfooliyan, A., & Weiner, A. M. (2013). Phase compensation communication technique against time reversal for ultra-wideband channels. / Communications IET, / 7(12), 1287-295. CrossRef
    15. Heritage, J. P., & Weiner, A. M. (2007). Advances in spectral optical code-division multiple-access communications. / IEEE Journal of Selected Topics in Quantum Electronics, / 13(5), 1351-369. CrossRef
    16. Mohebbi, A., Abbasi-Moghadam, D., Moghaddam, S. S., & Vakili, V. T. (2010). Performance enhancement of kurtosis detector using time reversal technique. In / Proceedings of IEEE international symposium on telecommunications (IST-010) (pp. 120-25). Tehran.
    17. Abbasi-Moghadam, D., & Vakili, V. T. (2011). Characterization of indoor time reversal UWB communication systems: Spatial, temporal and frequency properties. / International Journal of Communication Systems, / 24(3), 277-94. CrossRef
    18. Abbasi-Moghadam, D., & Vakily, V. T. (2012). Enhanced secure error correction code schemes in time reversal. / Springer Wireless Personal Communication, / 64(2), 403-23. CrossRef
    19. Ghavami, M., Michael, L. B., & Kohno, R. (2007). / Ultra wide-band signals and systems in communication
  • 作者单位:Dariush Abbasi-Moghadam (1)
    S. Mohammad Mirhoseini-Nezhad (1)

    1. Electrical Engineering Department, Shahid Bahonar University of Kerman, Shahab, Kerman, Iran
  • ISSN:1572-834X
文摘
Energy detectors have the advantage of simple structure and inexpensive price. Due to the low signal to noise ratio (SNR) of the received signal in ultra-wideBand (UWB) system, these desirable advantages can be achieved at the expense of non-trivial performance degradation. This paper presents a phase compensation (PC) technique to improve the performance of energy detector in UWB systems. In PC-UWB, the frequency dependent phase of the system response at the transmitter is extracted and its opposite spectral phase is used as prefilter. Because of Low complexity, cost and energy consumption of energy detectors, PC techniques has extensive potential for future of UWB communication systems. Measurement results show that the use of PC-UWB leads to signal power concentration at the receiver, which reduces the number of RAKE fingers required in coherent detection as well as achieves a higher data rate with less intersymbol interference. However time reversal UWB can achieve secure data transmission, but its performance is worse than PC-UWB. Simulation results show that phase compensation reduces the inter symbol interference impacts. Therefore it is possible to use a simple receiver with insignificant performance degradation. It is also shown that PC-UWB considerably outperforms TR-UWB and has satisfying performance in SNR greater than 13?dB.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.