Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection
详细信息    查看全文
  • 作者:E. R. Priest ; D. W. Longcope
  • 关键词:Sun ; flares ; Sun ; magnetic topology ; Magnetic reconnection ; Helicity
  • 刊名:Solar Physics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:292
  • 期:1
  • 全文大小:1086KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Astrophysics and Astroparticles; Atmospheric Sciences; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics);
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
  • 卷排序:292
文摘
The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main-phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (\(2\pi \) radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.