Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the entropy phenomenon
详细信息    查看全文
  • 作者:G. A. Sanadze ; A. A. Davituliani…
  • 关键词:plants ; isoprene effect ; entropy ; dissipative structure ; energy dynamics ; negative entropy
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:63
  • 期:2
  • 页码:204-209
  • 全文大小:282 KB
  • 参考文献:1.Sanadze, G.A., Emission of organic matter by leaves of Robinia pseudoacacia L., Bull. Acad. Sci. GSSR, 1957, vol. 19, pp. 83–86.
    2.Sanadze, G.A., Light-dependent excretion of molecular isoprene, Progr. Photosynth., 1969, vol. 2, pp. 701–707.
    3.Sharkey, T.D. and Singsaas, E.L., Why plants emit iroprene, Nature, 1995, vol. 374, p. 769.CrossRef
    4.Sharkey, T., Wiberly, A., and Donohue, A., Isoprene emission from plants, why and how, Ann. Bot., 2008, vol. 101, pp. 5–18.CrossRef PubMed
    5.Loreto, F., Mannozzi, M., Maris, C., Nascett, P., Ferranti, F., and Pascualini, S., Ozone quenching properties of isoprene and its antioxidant role in leaves, Plant Physiol., 2001, vol. 126, pp. 993–1000.CrossRef PubMed PubMedCentral
    6.Rosenstiel, T., Ebbets, A., Khatri, W., Fall, R., and Monson, R., Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate, Plant Biol., 2004, vol. 6, pp. 12–21.CrossRef PubMed
    7.Sanadze, G.A., Photobiosynthesis of isoprene as an example of leaf excretory function in the light of contemporary thermodynamics, Russ. J. Plant Physiol., 2010, vol. 57, pp. 1–6.CrossRef
    8.Vol’kenshtein, M.V., Biofizika (Biophysics), Moscow: Nauka, 1988.
    9.Bialek, W., Biophysics: Searching for Principles, Princeton, NJ: Princeton Univ. Press, 2012.
    10.Clausius, R., Abhandlung über die Mechanische Wärmetheorie, Braunschweig: Vieweg, 1864.
    11.Gibbs, J.W., The Scientific Papers. 1. Thermodynamics, New York: Dover, 1961.
    12.Prigogine, I., Etude Thermodynamique des Phenomenes Irreversibles, Bull. Acad. R. Belg., 1945, vol. 31, pp. 600–601.
    13.Shredinger, E., Chto takoe zhizn’ s tochki zreniya fizika (What is Life in Terms of Physics), Moscow: Atomizdat, 1972.
    14.Bauer, E.S., Teoreticheskaya biologiya (Theoretic Biology), Moscow: Vses. Inst. Eksp. Med., 1935.
    15.Opritov, V.A., Entropy of biosystems, Soros. Obraz. Zh., 1999, no. 6, pp. 33–38.
    16.Ziegler, H., Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics, Amsterdam: Nort-Holland, 1963.
    17.Prigogine, I. and Stengers, I., Order out of Chaos: Man’s New Dialogue with Nature, London: Heinemann, 1984.
    18.Sanadze, G.A., Mgaloblishvili, M.P., and Dalakishvili, K.G., Action of cerulenin, organophosphorus compounds, and synthetic analogs of carbohydrates on assimilation of CO2 and isoprene effect of isolated poplar protoplasts, Sov. Plant Physiol., 1990, vol. 37, pp. 6–11.
    19.Sanadze, G.A., Biogenic isoprene (a review), Russ. J. Plant Physiol., 2004, vol. 51, pp. 729–741.CrossRef
    20.Flexas, J. and Medrano, H., Energy dissipation in C3 plants under drought, Funct. Plant Biol., 2002, vol. 29, pp. 1209–1215.CrossRef
    21.Baazov, D.I. and Sanadze, G.A., Spectrum of action and effects of enhancing isoprene yield from poplar leaves, Sov. Plant Physiol., 1987, vol. 34, pp. 213–220.
    22.Khananashvili, V.O. and Sanadze, G.A., Localization of acetyl-CoA synthetase in the chloroplasts of poplar leaves, Sov. Plant Physiol., 1980, vol. 27, pp. 105–112.
    23.Lichtenthaler, H.K., The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 52, pp. 307–436.
    24.Tabita, F.R., Satagopan, S., Hanson, T.E., Krell, N.E., and Scott, S.S., Distinct form I, II, III and IV Rubisco proteins from the three kingdoms of the life provide clues about Rubisco evolution and structure/function relationships, J. Exp. Bot., 2008, vol. 59, pp. 1515–1524.PubMed
    25.Monson, P.K., Wilkinson, M.J., Monson, N.D., Trahan, N., Lee, D., Rosenstiel, T.R., and Fall, R., Biochemical controls on the CO2 response of leaf isoprene emission–an alternative view of Sanadze’s double carboxylation scheme, Ann. Agrar. Sci., 2009, vol. 7, pp. 21–29.
    26.Sanadze, G.A., Mgaloblishvili, M.P., and Dalakishvili, K.G., Independent pathways of carbon conversion reactions in Benson–Kal’vin cycle and isoprene emission in poplar leaves, Sov. Plant Physiol., 1986, vol. 33, pp. 856–863.
    27.Stumpf, P.K. and James, A.T., The biosynthesis of long chain fatty acids by lettuce chloroplast preparations, Biochim. Biophys. Acta, 1963, vol. 70, pp. 20–32.CrossRef PubMed
  • 作者单位:G. A. Sanadze (1)
    A. A. Davituliani (2)
    S. Sh. Pkhachiashvili (3)

    1. Georgian National Academy of Sciences, pr. Rustaveli 52, Tbilisi, 0108, Georgia
    2. Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
    3. Georgian Technical University, Tbilisi, 0175, Georgia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.