Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China
详细信息    查看全文
  • 作者:Xiao Hong Lu ; Xiao Lin Jiao ; Jianjun J. Hao…
  • 关键词:Grey mold ; Multi ; fungicide resistance ; QoI fungicides ; Panax ginseng ; cyt b ; bos1
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:144
  • 期:3
  • 页码:467-476
  • 全文大小:332 KB
  • 参考文献:Amiri, A., Heath, S. M., & Peres, N. A. (2013). Phenotypic characterization of multifungicide resistance in Botrytis cinerea isolates from strawberry fields in Florida. Plant Disease, 97(3), 393–401.CrossRef
    Anonymous (2012). FRAC list of plant pathogenic organisms resistant to disease control agents. Basel, Switzerland: Fungicide Resistance Action Committee.
    Banno, S., Yamashita, K., Fukumori, F., Okada, K., Uekusa, H., Takagaki, M., et al. (2009). Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology, 58(1), 120–129.CrossRef
    Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66(9), 967–973.PubMed CrossRef
    Chatzidimopoulos, M., Papaevaggelou, D., & Pappas, A. C. (2013). Detection and characterization of fungicide resistant phenotypes of Botrytis cinerea in lettuce crops in Greece. European Journal of Plant Pathology, 137(2), 363–376.CrossRef
    Cui, W., Beever, R. E., Parkes, S. L., & Templeton, M. D. (2004). Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology, 94(10), 1129–1135.PubMed CrossRef
    Cui, W., Beever, R. E., Parkes, S. L., Weeds, P. L., & Templeton, M. D. (2002). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genetics and Biology, 36(3), 187–198.PubMed CrossRef
    De Miccolis Angelini, R. M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S., & Faretra, F. (2014). Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science, 70(12), 1785–1796.PubMed CrossRef
    Fernández-Ortuño, D., Chen, F., & Schnabel, G. (2013). Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in north and South Carolina. Plant Disease, 97(1), 81–85.CrossRef
    Fernandez-Ortuno, D., Tores, J. A., de Vicente, A., & Perez-Garcia, A. (2008). Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology, 11(1), 1–9.PubMed
    Fillinger, S., Ajouz, S., Nicot, P. C., Leroux, P., & Bardin, M. (2012). Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PloS One. doi:10.​1371/​journal.​pone.​0042520 .PubMed PubMedCentral
    Grabke, A., Fernández-Ortuño, D., Amiri, A., Li, X., Peres, N. A., Smith, P., et al. (2014). Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Phytopathology, 104(4), 396–402.PubMed CrossRef
    Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Cytochrome b gene structure and consequences tor resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science, 62(6), 465–472.PubMed CrossRef
    Hilber, U. W., & Schüepp, H. (1996). A reliable method for testing the sensitivity of Botryotinia fuckeliana to anilinopyrimidines in vitro. Pesticide Science, 47(3), 241–247.CrossRef
    Hu, Y., Kong, W., Wei, J., & Yang, M. (2013). Present situation and condideration of application and residue limit standard of pesticides in Panax ginseng. Central South Pharmacy, 11(9), 664–669.
    Jiang, J. H., Ding, L. S., Michailides, T. J., Li, H. Y., & Ma, Z. H. (2009). Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pesticide Biochemistry and Physiology, 93(2), 72–76.CrossRef
    Kim, J., Min, J. Y., Bae, Y. S., & Kim, H. T. (2009). Molecular analysis of Botrytis cinerea causing ginseng grey mold resistant to carbendazim and the mixture of carbendazin plus diethofencarb. Plant Pathology Journal, 25(4), 322–327.CrossRef
    Korolev, N., Mamiev, M., Zahavi, T., & Elad, Y. (2011). Screening of Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. European Journal of Plant Pathology, 129(4), 591–608.CrossRef
    Lennox, C. L., & Spotts, R. A. (2003). Sensitivity of populations of Botrytis cinerea from pear-related sources to benzimidazole and dicarboximide fungicides. Plant Disease, 87(6), 645–649.CrossRef
    Leroch, M., Plesken, C., Weber, R. W. S., Kauff, F., Scalliet, G., & Hahn, M. (2013). Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Applied and Environmental Microbiology, 79(1), 159–167.PubMed PubMedCentral CrossRef
    Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 195–222). Dordrecht: Kluwer Academic Publisher.CrossRef
    Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., et al. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58(9), 876–888.PubMed CrossRef
    Li, C., Sun, Y., & Guo, G. (2011). Analysis on how to develop the Jilin ginseng. Contemporary Eco-Agriculture, 20(1), 130–132.
    Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863.CrossRef
    Ma, Z., Yan, L., Luo, Y., & Michailides, T. J. (2007). Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochemistry and Physiology, 88(3), 300–306.CrossRef
    Malandrakis, A., Markoglou, A., & Ziogas, B. (2011). Molecular characterization of benzimidazole-resistant B. cinerea field isolates with reduced or enhanced sensitivity to zoxamide and diethofencarb. Pesticide Biochemistry and Physiology, 99(1), 118–124.CrossRef
    Oshima, M., Banno, S., Okada, K., Takeuchi, T., Kimura, M., Ichiishi, A., et al. (2006). Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea. Journal of General Plant Pathology, 72(1), 65–73.CrossRef
    Oshima, M., Fujimura, M., Banno, S., Hashimoto, C., Motoyama, T., Ichiishi, A., et al. (2002). A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 92(1), 75–80.PubMed CrossRef
    Punja, Z. K. (1997). Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia. Canadian Journal of Plant Pathology, 19(3), 301–306.CrossRef
    Punja, Z. K. (2011). American ginseng: research developments, opportunities, and challenges. Journal of Ginseng Research, 35(3), 368–374.PubMed PubMedCentral CrossRef
    Sun, H. Y., Wang, H. C., Chen, Y., Li, H. X., Chen, C. J., & Zhou, M. G. (2010). Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Disease, 94(5), 551–556.CrossRef
    Wang, C., Bai, Q., Gao, J., Xie, Y., Hu, J., & Guo, L. (2011). Toxicity test of 22 fungicides and their different proportions against Botrytis cinerea. Agrochemicals, 50(1), 61–64.
    White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & J. G. White (Eds.), PCR protocol: a guide to methods and applications (pp. 315–322). New York: Academic Press.
    Yarden, O., & Katan, T. (1993). Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology, 83(12), 1478–1483.CrossRef
    Yin, D., Chen, X., Hamada, M. S., Yu, M., Yin, Y., & Ma, Z. (2014). Multiple resistance to QoIs and other classes of fungicides in Botrytis cinerea populations from strawberry in Zhejiang province, China. European Journal of Plant Pathology, 141(1), 169–177.CrossRef
    Yin, Y. N., Kim, Y. K., & Xiao, C. L. (2012). Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Phytopathology, 102(3), 315–322.PubMed CrossRef
    Zhang, C. Q., Liu, Y. H., & Zhu, G. N. (2010). Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology, 126(4), 509–515.CrossRef
    Ziogas, B. N., Nikou, D., Markoglou, A. N., Malandrakis, A. A., & Vontas, J. (2009). Identification of a novel point mutation in the beta-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. European Journal of Plant Pathology, 125(1), 97–107.CrossRef
  • 作者单位:Xiao Hong Lu (1)
    Xiao Lin Jiao (1)
    Jianjun J. Hao (2)
    Amanda Juan Chen (1)
    Wei Wei Gao (1)

    1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
    2. School of Food and Agriculture, The University of Maine, Orono, ME, 04469, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Botrytis cinerea infects ginseng throughout the whole growing season and results in significant economic losses. Fungicides have been the primary strategy in disease control, but frequent applications can increase the risk of fungicide resistance. To determine the resistance of field populations, 76 B. cinerea isolates were collected from 10 ginseng fields in Northeastern China in 2012 and 2013. The sensitivities of these isolates were examined to carbendazim, iprodione, pyrimethanil and azoxystrobin by analyzing mycelial growth inhibition. Almost all test isolates were resistant to at least one fungicide. For example, 27.6 %, 49.9 % and 21.1 % of the population was resistant to one, two or three of four test fungicides, respectively. There was only one isolate that was sensitive to all four fungicides. However, none were simultaneously resistant to all of the four fungicides. Mutations for E198A in the β-tubulin gene and G143A in the cyt b gene were found in all carbendazim- and azoxystrobin-resistant isolates, respectively, indicating a high level of resistance. Various mutations in the bos1 gene were associated with iprodione resistance, among which two combined point mutations, D757N and E369P, could be a novel genotype. Gene structure analysis showed that 50 % of the isolates carried the Bcbi143/144 intron in cyt b, indicating a high inherent risk for the development of G143A-associated resistance to quinone outside inhibitor fungicides. Most resistant isolates did not show reduced compound fitness in mycelial growth, sclerotial and conidial production, aggressiveness and sensitivity to osmotic stress. In conclusion, multi-fungicide resistance of B. cinerea contributed to the inefficiency of current fungicides. Keywords Grey mold Multi-fungicide resistance QoI fungicides Panax ginseng cyt b bos1
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.