Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41
详细信息    查看全文
  • 作者:Zhenzhong Wang (1)
    Yu Cui (1)
    Yongxing Chen (1)
    Deyun Zhang (1)
    Yong Liang (1)
    Dong Zhang (1)
    Qiuhong Wu (1)
    Jingzhong Xie (1)
    Shuhong Ouyang (1)
    Delin Li (1)
    Yinlian Huang (1)
    Ping Lu (1)
    Guoxin Wang (1)
    Meihua Yu (1)
    Shenghui Zhou (1)
    Qixin Sun (1)
    Zhiyong Liu (1)
  • 刊名:Theoretical and Applied Genetics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:127
  • 期:8
  • 页码:1741-1751
  • 全文大小:715 KB
  • 参考文献:1. Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny based modelling of extinct ancestors. Trends Plant Sci 15:479-87 CrossRef
    2. Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C (2013) The inhibitor of wax 1 locus ( / Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74(6):989-002 CrossRef
    3. Ben-David R, Xie WL, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of / PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor Appl Genet 121:499-10 CrossRef
    4. Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene / Pm36 introgressed from / Triticum turgidum var / . dicoccoides in durum wheat. Theor Appl Genet 117:135-42 CrossRef
    5. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705-10 CrossRef
    6. Chen X, Luo Y, Xia X, Xia L, Chen X, Ren Z, He Z, Jia J (2005) Chromosomal location of powdery mildew resistance gene / Pm16 in wheat using SSR marker analysis. Plant Breed 124:225-28 CrossRef
    7. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686-701 CrossRef
    8. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene / Lr10 from the hexaploid wheat ( / Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253-5258 CrossRef
    9. Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557-64 CrossRef
    10. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357-360 CrossRef
    11. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of / Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749-52 CrossRef
    12. Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47-8 CrossRef
    13. Hua W, Liu ZJ, Zhu J, Xie CJ, Yang TM, Zhou YL, Duan XY, Sun QX, Liu ZY (2009) Identification and genetic mapping of / pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer ( / Triticum turgidum var. / dicoccoides). Theor Appl Genet 119:223-30 CrossRef
    14. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793-00 CrossRef
    15. Ji XL, Xie CJ, Ni ZF, Yang TM, Nevo E, Fahima T, Liu ZY, Sun QX (2007) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer ( / Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385-90 CrossRef
    16. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KF, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J (2013) / Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91-5
    17. Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93-00 CrossRef
    18. Li GQ, Fang TL, Zhang HT, Xie CJ, Li HJ, Yang TM, Nevo E, Fahima T, Sun QX, Liu ZY (2009) Molecular identification of a new powdery mildew resistance gene / Pm41 on chromosome 3BL derived from wild emmer ( / Triticum turgidum var / . dicoccoides). Theor Appl Genet 119:531-39 CrossRef
    19. Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmaker/EXP3.0 Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambridge
    20. Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor / Triticum urartu. Nature 496:87-0 CrossRef
    21. Liu RH, Meng JL (2003) MapDraw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317-21
    22. Liu ZY, Sun QX, Ni ZF, Yang TM (1999) Development of SCAR markers linked to the / Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215-19 CrossRef
    23. Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene / Pm30 in wheat originating from wild emmer. Euphytica 123:21-9 CrossRef
    24. Liu ZJ, Zhu J, Cui Y, Liang Y, Wu HB, Song W, Liu Q, Yang T, Sun QX, Liu ZY (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer ( / Triticum turgidum var / . dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041-049 CrossRef
    25. Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106(37):15780-5785 CrossRef
    26. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. 12th international wheat genetics symposium. Yokohama, Japan
    27. Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat ( / Triticum aestivum L. em Thell.) 9. Gene / MlZec1 from the / Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161-67 CrossRef
    28. Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of / Triticum dicoccoides collected in Israel to infection with / Erysiphe graminis tritici. Euphytica 33:41-7 CrossRef
    29. Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorák J, Miftahudin, Gustafson JP, Pathan MS, Nguyen HT, Matthews DE, Chao S, Lazo GR, Hummel DD, Anderson OD, Anderson JA, Gonzalez-Hernandez JL, Peng JH, Lapitan N, Qi LL, Echalier B, Gill BS, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Erayman M, Gill KS, McGuire PE, Qualset CO, Sorrells ME (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639-50 CrossRef
    30. Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, / Triticum dicoccoides. Springer, Berlin CrossRef
    31. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551-56 CrossRef
    32. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101-04 CrossRef
    33. Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57-0 CrossRef
    34. Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121-26 CrossRef
    35. Rustenholz C, Choulet F, Laugier C, Safár J, Simková H, Dolezel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S, Bellec A, Bergès H, Feuillet C, Paux E (2011) A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol 157:1596-608 CrossRef
    36. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014-018 CrossRef
    37. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass / Brachypodium distachyon. Nature 463(7282):763-68
    38. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298-301 CrossRef
    39. Wu HB, Qin JX, Han Jun, Zhao XJ, Ouyang SH, Liang Y, Zhang D, Wang ZZ, Wu QH, Xie JZ, Cui Y, Peng HR, Sun QX, Liu ZY (2013) Comparative high-resolution mapping of the wax inhibitors / Iw1 and / Iw2 in hexaploid wheat. Plos One 8(12):e84691
    40. Xie W, Ben-David R, Zeng B, Distelfeld A, Roder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene / PmG3 M derived from wild emmer wheat, / Triticum dicoccoides. Theor Appl Genet 124:911-22 CrossRef
    41. Xue F, Ji W, Wang C, Zhang H, Yang B (2012) High-density mapping and marker development for the powdery mildew resistance gene / PmAS846 derived from wild emmer wheat ( / Triticum turgidum var. / dicoccoides). Theor Appl Genet 124:1549-560 CrossRef
    42. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene / Pm3b from hexaploid wheat. Plant J 37:528-38 CrossRef
    43. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene / VRN1. Proc Natl Acad Sci USA 100:6263-268 CrossRef
    44. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat / VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640-644 CrossRef
    45. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene / VRN3 is an orthologue of / FT. Proc Natl Acad Sci USA 103:19581-9586 CrossRef
    46. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292-98 CrossRef
    47. Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ, Zhou YL, Duan XY, Yang T, Sun QX, Liu ZY (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene / Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat ( / Triticum aestivum L.). Theor Appl Genet 121:1613-621 CrossRef
  • 作者单位:Zhenzhong Wang (1)
    Yu Cui (1)
    Yongxing Chen (1)
    Deyun Zhang (1)
    Yong Liang (1)
    Dong Zhang (1)
    Qiuhong Wu (1)
    Jingzhong Xie (1)
    Shuhong Ouyang (1)
    Delin Li (1)
    Yinlian Huang (1)
    Ping Lu (1)
    Guoxin Wang (1)
    Meihua Yu (1)
    Shenghui Zhou (1)
    Qixin Sun (1)
    Zhiyong Liu (1)

    1. State Key Laboratory for Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
  • ISSN:1432-2242
文摘
Key message By applying comparative genomics analyses, a high-density genetic linkage map narrowed the powdery mildew resistance gene Pm41 originating from wild emmer in a sub-centimorgan genetic interval. Abstract Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, results in large yield losses worldwide. A high-density genetic linkage map of the powdery mildew resistance gene Pm41, originating from wild emmer (Triticum turgidum var. dicoccoides) and previously mapped to the distal region of chromosome 3BL bin 0.63-.00, was constructed using an F5:6 recombinant inbred line population derived from a cross of durum wheat cultivar Langdon and wild emmer accession IW2. By applying comparative genomics analyses, 19 polymorphic sequence-tagged site markers were developed and integrated into the Pm41 genetic linkage map. Ultimately, Pm41 was mapped in a 0.6?cM genetic interval flanked by markers XWGGC1505 and XWGGC1507, which correspond to 11.7, 19.2, and 24.9?kb orthologous genomic regions in Brachypodium, rice, and sorghum, respectively. The XWGGC1506 marker co-segregated with Pm41 and could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection of Pm41. Detailed comparative genomics analysis of the markers flanking the Pm41 locus in wheat and the putative orthologous genes in Brachypodium, rice, and sorghum suggests that the gene order is highly conserved between rice and sorghum. However, intra-chromosome inversions and re-arrangements are evident in the wheat and Brachypodium genomic regions, and gene duplications are also present in the orthologous genomic regions of Pm41 in wheat, indicating that the Brachypodium gene model can provide more useful information for wheat marker development.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.