Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics
详细信息    查看全文
  • 作者:Zdenek Tuma ; Jitka Kuncova ; Jan Mares…
  • 关键词:Mitochondria ; Pig kidney ; Proteomics ; Two ; dimensional electrophoresis
  • 刊名:Clinical and Experimental Nephrology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:39-49
  • 全文大小:1,830 KB
  • 参考文献:1.Balaban RS, Mandel LJ, Soltoff SP, Storey JM. Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci U S A. 1980;77(1):447–51.PubMedCentral CrossRef PubMed
    2.Guder WG, Ross BD. Enzyme distribution along the nephron. Kidney Int. 1984;26(2):101–11.CrossRef PubMed
    3.Hall AM, Unwin RJ. The not so ‘mighty chondrion’: emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiol. 2007;105(1):p1–10.CrossRef PubMed
    4.Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig. 2009;119(5):1275–85.PubMedCentral CrossRef PubMed
    5.Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol. 2012;302(7):F853–64.PubMedCentral CrossRef PubMed
    6.Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47(11):1517–25.CrossRef PubMed
    7.Parikh SM. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury. Current opinion in critical care. 2013;19(6):554–9.PubMedCentral CrossRef PubMed
    8.Thongboonkerd V. Current status of renal and urinary proteomics: ready for routine clinical application? Nephrol Dial Transplant. 2010;25(1):11–6.CrossRef PubMed
    9.Arthur JM, Thongboonkerd V, Scherzer JA, Cai J, Pierce WM, Klein JB. Differential expression of proteins in renal cortex and medulla: a proteomic approach. Kidney Int. 2002;62(4):1314–21.CrossRef PubMed
    10.Xu B, Yoshida Y, Zhang Y, Yaoita E, Osawa T, Yamamoto T. Two-dimensional electrophoretic profiling of normal human kidney: differential protein expression in glomerulus, cortex and medulla. J Electrophor. 2005;49(1):5–13.CrossRef
    11.Fountoulakis M, Berndt P, Langen H, Suter L. The rat liver mitochondrial proteins. Electrophoresis. 2002;23(2):311–28.CrossRef PubMed
    12.Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, et al. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 2009;58(9):1986–97.PubMedCentral CrossRef PubMed
    13.Freund DM, Prenni JE, Curthoys NP. Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis. Am J Physiol Renal Physiol. 2013;304(2):F145–55.PubMedCentral CrossRef PubMed
    14.Chaiyarit S, Thongboonkerd V Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res. 2012
    15.Goldfarb RD, Dellinger RP, Parrillo JE. Porcine models of severe sepsis: emphasis on porcine peritonitis. Shock. 2005;24(Suppl 1):75–81.CrossRef PubMed
    16.Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J clin investig. 2009;10(119):2868–78.CrossRef
    17.Baumert H, Faure JP, Zhang K, Petit I, Goujon JM, Dutheil D, et al. Evidence for a mitochondrial impact of trimetazidine during cold ischemia and reperfusion. Pharmacology. 2004;71(1):25–37.CrossRef PubMed
    18.Bendixen E. Animal models for translational proteomics. Proteomics Clin Appl. 2014;8(10):637–9.CrossRef PubMed
    19.de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB j: off publ Fed Am Soc Exp Biol. 2003;17(9):1096–8.
    20.Mares J, Richtrova P, Hricinova A, Tuma Z, Moravec J, Lysak D, et al. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteomics Clin Appl. 2010;4(10–11):829–38.CrossRef PubMed
    21.Kiyomiya K, Matsushita N, Matsuo S, Kurebe M. Cephaloridine-induced inhibition of cytochrome c oxidase activity in the mitochondria of cultured renal epithelial cells (LLC-PK(1)) as a possible mechanism of its nephrotoxicity. Toxicol Appl Pharmacol. 2000;167(2):151–6.CrossRef PubMed
    22.Verma N, Rettenmeier AW, Schmitz-Spanke S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics. 2011;11(4):776–93.CrossRef PubMed
    23.Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol. 2009;41(10):1805–16.CrossRef PubMed
    24.Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J. 1996;320(Pt 2):345–57.PubMedCentral CrossRef PubMed
    25.Lehir M, Dubach UC. Peroxisomal and mitochondrial beta-oxidation in the rat-kidney: distribution of fatty acyl-coenzyme a oxidase and 3-hydroxyacyl-coenzyme-a dehydrogenase-activities along the nephron. J Histochem Cytochem. 1982;30(5):441–4.CrossRef
    26.Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.CrossRef PubMed
    27.Yasuda M, Fujita T, Higashio T, Okahara T, Abe Y, Yamamoto K. Effects of 4-pentenoic acid and furosemide on renal functions and renal uptake of individual free fatty acids. Pflug Arch. 1980;385(2):111–6.CrossRef
    28.Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem. 2001;276(29):27605–12.CrossRef PubMed
    29.Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006;70(11):1929–34.PubMedCentral CrossRef PubMed
    30.Lowry M, Hall DE, Brosnan JT. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metab, Clin Exp. 1985;34(10):955–61.CrossRef
    31.Burgmeier N, Zawislak R, Defeudis FV, Bollack C, Helwig JJ. Glutamic acid decarboxylase in tubules and glomeruli isolated from rat kidney cortex. Eur J Biochem. 1985;151(2):361–4.CrossRef PubMed
    32.Tillakaratne NJ, Medina-Kauwe L, Gibson KM. Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol. 1995;112(2):247–63.CrossRef PubMed
    33.Pircher H, Straganz GD, Ehehalt D, Morrow G, Tanguay RM, Jansen-Durr P. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J Biol Chem. 2011;286(42):36500–8.PubMedCentral CrossRef PubMed
    34.Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.PubMed
    35.van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr. 2004;79(2):185–97.PubMed
    36.Monteil C, Fillastre JP, Morin JP. Expression and subcellular distribution of phosphoenolpyruvate carboxykinase in primary cultures of rabbit kidney proximal tubule cells: comparative study with renal and hepatic PEPCK in vivo. Biochim Biophys Acta. 1995;1243(3):437–45.CrossRef PubMed
    37.Watford M, Hod Y, Chiao YB, Utter MF, Hanson RW. The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem. 1981;256(19):10023–7.PubMed
    38.Modaressi S, Brechtel K, Christ B, Jungermann K. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. Biochem J. 1998;333(Pt 2):359–66.PubMedCentral CrossRef PubMed
    39.Schmidt U, Guder WG. Sites of enzyme activity along the nephron. Kidney Int. 1976;9(3):233–42.CrossRef PubMed
    40.Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci Res. 2013;91(8):1030–43.CrossRef PubMed
    41.Dukhande VV, Sharma GC, Lai JC, Farahani R. Chronic hypoxia-induced alterations of key enzymes of glucose oxidative metabolism in developing mouse liver are mTOR dependent. Mol Cell Biochem. 2011;357(1–2):189–97.CrossRef PubMed
    42.Levillain O, Hus-Citharel A, Garvi S, Peyrol S, Reymond I, Mutin M, et al. Ornithine metabolism in male and female rat kidney: mitochondrial expression of ornithine aminotransferase and arginase II. Am J Physiol Renal Physiol. 2004;286(4):F727–38.CrossRef PubMed
    43.Hirst J. Why does mitochondrial complex I have so many subunits? Biochem J. 2011;437(2):e1–3.CrossRef PubMed
    44.Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta. 2003;1604(3):135–50.CrossRef PubMed
    45.Guzy RD, Hoyos B, Robin E, Chen H, Liu LP, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.CrossRef PubMed
    46.Trueblood CE, Wright RM, Poyton RO. Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome c oxidase subunit V by heme and the HAP2 and REO1 genes. Mol Cell Biol. 1988;8(10):4537–40.PubMedCentral CrossRef PubMed
    47.Rostovtseva T, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem. 1996;271(45):28006–8.CrossRef PubMed
    48.Abu-Hamad S, Sivan S, Shoshan-Barmatz V. The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A. 2006;103(15):5787–92.PubMedCentral CrossRef PubMed
    49.Woriax VL, Burkhart W, Spremulli LL. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim Biophys Acta. 1995;1264(3):347–56.CrossRef PubMed
    50.Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17(23):3697–707.CrossRef PubMed
  • 作者单位:Zdenek Tuma (1)
    Jitka Kuncova (1) (2)
    Jan Mares (1) (3)
    Martin Matejovic (1) (3)

    1. Faculty of Medicine in Plzen, Biomedical Center, Charles University in Prague, alej Svobody, 1655/76, Plzen, Czech Republic
    2. Department of Physiology, Charles University Medical School, Plzen, Czech Republic
    3. Department of Internal Medicine I, Charles University Medical School and Teaching Hospital, Plzen, Czech Republic
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Nephrology
    Internal Medicine
    Urology and Andrology
  • 出版者:Springer Japan
  • ISSN:1437-7799
文摘
Background Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.