Determination of critical micelle concentrations of ionic and nonionic surfactants based on relative viscosity measurements by capillary electrophoresis
详细信息    查看全文
  • 作者:Chunhung Wu (1)
    Neng Jia Li (1)
    Kuan Cheng Chen (1)
    Hsiu-Fu Hsu (1)
  • 关键词:Critical micelle concentration ; Surfactant ; Capillary electrophoresis ; Relative viscosity
  • 刊名:Research on Chemical Intermediates
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:40
  • 期:6
  • 页码:2371-2379
  • 全文大小:
  • 参考文献:1. T.F. Tadros, / Applied Surfactants: Principles and Applications, 1st edn. (Wiley, Weinheim, 2005), pp. 1-6 CrossRef
    2. E. Calvo, R. Bravo, A. Amigo, J. Gracia-Fadrique, Fluid Phase Equilib. 282, 14 (2009) CrossRef
    3. E. Fuguet, C. Rafols, M. Roses, E. Bosch, Anal. Chim. Acta 548, 95 (2005) CrossRef
    4. U. Anand, C. Jash, S. Mukherjee, J. Colloid Interface Sci. 364, 400 (2011) CrossRef
    5. R.E. Stark, P.D. Leff, S.G. Milheim, A. Kropf, J. Phys. Chem. 88, 6063 (1984) CrossRef
    6. C.-E. Lin, J. Chromatogr. A 1037, 467 (2004) CrossRef
    7. M.S. Bello, R. Rezzonico, P.G. Righetti, J. Chromatogr. A 659, 199 (1994) CrossRef
    8. S. Priyanto, G.A. Mansoori, A. Suwono, Chem. Eng. Sci. 56, 6933 (2001) CrossRef
    9. F.E. Stanley, A.M. Warner, E. Schneiderman, A.M. Stalcup, J. Chromatogr. A 1216, 8431 (2009) CrossRef
    10. E. Cordova, J. Gao, G.M. Whitesides, Anal. Chem. 69, 1370 (1997) CrossRef
    11. A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, J.K.G. Dhont, J. Chem. Phys. 100, 2170 (1994) CrossRef
    12. M.A. Lauffer, J. Am. Chem. Soc. 66, 1188 (1944) CrossRef
    13. A. Evilevitch, V. Lobaskin, U. Olsson, P. Linse, P. Schurtenberger, Langmuir 17, 1043 (2001) CrossRef
    14. H. Chen, Y. Ding, Y. He, C. Tan, Chem. Phys. Lett. 444, 333 (2007) CrossRef
    15. M.L. Corrin, W.D. Harkins, J. Am. Chem. Soc. 69, 683 (1947) CrossRef
    16. L. Xu, E. Yokoyama, M. Satoh, Langmuir 21, 7153 (2005) CrossRef
    17. M.J. Schick, J. Phys. Chem. 68, 3585 (1964) CrossRef
    18. M. Abu-Hamdiyyah, K.J. Kumari, Phys. Chem. 94, 6445 (1990) CrossRef
    19. J.C. Jacquier, P.L. Desbene, J. Chromatogr. A 718, 167 (1995) CrossRef
    20. G. Mangiapia, D. Berti, P. Baglioni, J. Teixeira, L. Paduano, J. Phys. Chem. B 108, 9772 (2004) CrossRef
    21. L.V. Dearden, E.M. Woolley, J. Chem. Thermodyn. 28, 1283 (1996) CrossRef
    22. B. Lindman, N. Kamenka, M.-C. Puyal, B. Brun, B. Jonsson, J. Phys. Chem. 88, 53 (1984) CrossRef
    23. A. Gonzalez-Perez, J.M. Ruso, G. Prieto, F. Sarmiento, Colloid Polym. Sci. 282, 1133 (2004) CrossRef
    24. M.F. Emerson, A. Holtzer, J. Phys. Chem. 69, 3718 (1965) CrossRef
    25. R. Sabate, M. Gallardo, J. Estelrich, Electrophoresis 21, 481 (2000) CrossRef
    26. A.K. Singh, M. Darshi, S. Kanvah, J. Phys. Chem. A 104, 464 (2000) CrossRef
    27. A. Zdziennicka, K. Szymczyk, J. Krawczyk, B. Janczuk, Fluid Phase Equilib. 322-23, 126 (2012) CrossRef
    28. A. Chattopadhyay, K.G. Harikumar, FEBS Lett. 391, 199 (1996) CrossRef
    29. Q. Guan, S.D. Noblitt, C.S. Henry, Electrophoresis 33, 379 (2012) CrossRef
    30. J.C. Gertsch, S.D. Noblitt, D.M. Cropek, C.S. Henry, Anal. Chem. 82, 3426 (2010) CrossRef
    31. B. Rozycka-Roszak, P. Misiak, B. Jurczak, K.A. Wilk, J. Phys. Chem. B 112, 16546 (2008) CrossRef
    32. A. Vishnyakov, M.-T. Lee, A.V. Neimark, J. Phys. Chem. Lett. 4, 797 (2013) CrossRef
    33. C. Wu, T. Liu, B. Chu, Macromolecules 30, 4574 (1997) CrossRef
    34. P. Alexandridus, J.F. Holzwarth, T.A. Hatton, Macromolecules 27, 2414 (1994) CrossRef
    35. T. Zemb, M. Drifford, M. Hayoun, A. Jehanno, J. Phys. Chem. 87, 4524 (1983) CrossRef
    36. E. Ruckenstein, R. Nagarajan, J. Phys. Chem. 85, 3010 (1981) CrossRef
    37. M.A. Desando, L.W. Reeves, Can. J. Chem. 64, 1817 (1986) CrossRef
    38. G.K. Batchelor, J.T. Green, J. Fluid Mech. 56, 401 (1972) CrossRef
    39. P. Ekwall, P. Holmberg, Acta Chem. Scand. 19, 455 (1965) CrossRef
    40. L. Moreira, A. Firoozabadi, Langmuir 26, 15177 (2010) CrossRef
  • 作者单位:Chunhung Wu (1)
    Neng Jia Li (1)
    Kuan Cheng Chen (1)
    Hsiu-Fu Hsu (1)

    1. Department of Chemistry, Tamkang University, 151 Yingchuan Road, Tamsui Dist., New Taipei City, 25137, Taiwan
  • ISSN:1568-5675
文摘
The critical micelle concentration (CMC) can be obtained by measuring the distinct physical properties of surfactant molecules in the monomeric and micellar states. In this study, two linear increments of relative viscosity with distinct slopes were obtained when increasing surfactant concentrations from dilute solution to above the CMC, which was then determined by the intersection of the two linear extrapolations. Using a capillary electrophoresis (CE) instrument and Poiseuille’s law, the viscosities of surfactants at a series of concentrations covering the monomeric and micellar regions could be obtained by measuring the hydrodynamic flow rates of the corresponding surfactant solutions. We applied this method to determine the CMC values of various types of surfactants including anionic, cationic, zwitterionic, and nonionic surfactants. The resulting CMC values were all in good agreement with those reported in literature. Using this method, the multiple-stage micellization process of a short-chain surfactant was revealed. We have also demonstrated that the CE-based viscometer was applicable to the study of CMC variation caused by organic or electrolyte additives.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.