The symmetric invariants of centralizers and Slodowy grading
详细信息    查看全文
  • 作者:Jean-Yves Charbonnel ; Anne Moreau
  • 关键词:Symmetric invariant ; Centralizer ; Polynomial algebra ; Slodowy grading ; 17B35 ; 17B20 ; 13A50 ; 14L24
  • 刊名:Mathematische Zeitschrift
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:282
  • 期:1-2
  • 页码:273-339
  • 全文大小:1,125 KB
  • 参考文献:1.Arakawa, T., Premet, A.: Quantization of Fomenko-Mishchenko algebras via affine W-algebras (preprint)
    2.Benson, D.J.: Polynomial Invariants of Finite Groups. Cambridge University Press, Cambridge (1993)CrossRef
    3.Bolsinov, A.V.: Commutative families of functions related to consistent Poisson brackets. Acta Applicandae Mathematicæ 24(1), 253–274 (1991)MathSciNet CrossRef
    4.Bourbaki, N.: Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris
    5.Brown, J., Brundan, J.: Elementary invariants for centralizers of nilpotent matrices. J. Aust. Math. Soc. 86(1), 1–15 (2009)MathSciNet CrossRef
    6.Carter, R.W.: Finite groups of Lie type: conjugacy classes and complex characters. Wiley, New York (1985)
    7.Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)MathSciNet
    8.Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Co., New York (1993)
    9.de Graaf, W.A.: Computing with Nilpotent Orbits in Simple Lie Algebras of Exceptional Type. London Mathematical Society, London (2008)
    10.Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974)
    11.Dixmier, J., Duflo, M., Vergne, M.: Sur la représentation coadjointe d’une algèbre de Lie. Compos. Math. 29, 309–323 (1974)MathSciNet
    12.Duflo, M., Vergne, M.: Une propriété de la représentation coadjointe d’une algèbre de Lie. C.R.A.S, Paris (1969)
    13.Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gel’fand-Dikiĭ algebras. Infinite analysis, Part A, B (Kyoto, 1991), 197–215, Advanced Series in Mathematical Physics, vol. 16, World Science Publisher, River Edge, NJ (1992)
    14.Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics. Springer, Berlin (1977)CrossRef
    15.Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79 (1964), pp. 109–203 and pp. 205–326
    16.Joseph, A., Shafrir, D.: Polynomiality of invariants, unimodularity and adapted pairs. Transf. Groups 15, 851–882 (2010)MathSciNet CrossRef
    17.Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)MathSciNet CrossRef
    18.Matsumura, H.: Commutative Ring Theory Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)
    19.Mehta, M.L.: Basic sets of invariant polynomials for finite reflection groups. Comm. Algebra 16(5), 1083–1098 (1988)MathSciNet CrossRef
    20.Moreau, A.: Quelques propriétés de l’indice dans une algèbre de Lie semi-simple, Ph.D. thesis (2006). http://​www.​institut.​math.​jussieu.​fr/​theses/​2006/​moreau/​
    21.Panyushev, D.I.: The index of a Lie algebra, the centralizer of a nilpotent element, and the normaliser of the centralizer. Math. Proc. Camb. Philos. Soc. 134, 41–59 (2003)MathSciNet CrossRef
    22.Panyushev, D.I., Yakimova, O.: Parabolic contractions of semisimple Lie algebras and their invariants. Selecta Math. 19(3), 699–717 (2013)MathSciNet CrossRef
    23.Panyushev, D.I., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)MathSciNet CrossRef
    24.Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)MathSciNet CrossRef
    25.Rosenlicht, M.: A remark on quotient spaces. Anais da Academia brasileira de ciencias 35, 487–489 (1963)MathSciNet
    26.Topley, L.: Invariants of centralisers in positive characteristic. J. Algebra 399, 1021–1050 (2014)MathSciNet CrossRef
    27.Yakimova, O.: The index of centralisers of elements in classical Lie algebras. Funct. Anal. Appl. 40, 42–51 (2006)MathSciNet CrossRef
    28.Yakimova, O.: Centers of centralisers in the classical Lie algebras (preprint). http://​www.​mccme.​ru/​~yakimova/​center/​center (2006)
    29.Yakimova, O.: A counterexample to Premet’s and Joseph’s conjecture. Bull. Lond. Math. Soc. 39, 749–754 (2007)MathSciNet CrossRef
    30.Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59(3), 903–935 (2009)MathSciNet CrossRef
  • 作者单位:Jean-Yves Charbonnel (1)
    Anne Moreau (2)

    1. Groupes, Représentations et géométrie, Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR 7586, Université Paris Diderot - CNRS, Bâtiment Sophie Germain, Case 7012, 75205, Paris Cedex 13, France
    2. Laboratoire de Mathématiques et Applications de Poitiers (LMA), Boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962, Futuroscope Chasseneuil Cedex, France
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1823
文摘
Let \(\mathfrak {g}\) be a finite-dimensional simple Lie algebra of rank \(\ell \) over an algebraically closed field \(\Bbbk \) of characteristic zero, and let e be a nilpotent element of \(\mathfrak {g}\). Denote by \(\mathfrak {g}^{e}\) the centralizer of e in \(\mathfrak {g}\) and by \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) the algebra of symmetric invariants of \(\mathfrak {g}^{e}\). We say that e is good if the nullvariety of some \(\ell \) homogenous elements of \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) in \(({\mathfrak g}^{e})^{*}\) has codimension \(\ell \). If e is good then \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) is a polynomial algebra. The main result of this paper stipulates that if for some homogenous generators of \( \mathrm{S}({\mathfrak g}) ^{{\mathfrak g}} \), the initial homogenous components of their restrictions to \(e+\mathfrak {g}^{f}\) are algebraically independent, with (e, h, f) an \(\mathfrak {sl}_2\)-triple of \(\mathfrak {g}\), then e is good. As applications, we pursue the investigations of Panyushev et al. (J. Algebra 313:343–391, 2007) and we produce (new) examples of nilpotent elements that satisfy the above polynomiality condition, in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type \(\mathbf{D}_{7}\). Keywords Symmetric invariant Centralizer Polynomial algebra Slodowy grading
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.