Stochastic Lagrangian Simulation of Particle Deposition in Turbulent Channel Flows
详细信息    查看全文
  • 作者:Dmitrii Ph. Sikovsky
  • 关键词:Particle ; laden flows ; Particle deposition ; Lagrangian stochastic models ; Wall ; bounded turbulence ; Particle accumulation
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:95
  • 期:2-3
  • 页码:561-582
  • 全文大小:1,291 KB
  • 参考文献:1.Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flows. Ann. Rev. Fluid Mech. 42, 111鈥?33 (2010)CrossRef
    2.Soldati, A., Marchioli, C.: Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. Int. J. Multiphase Flow 35, 827鈥?39 (2009)CrossRef
    3.Simonin, O., Deutsch, E., Minier, J.-P.: Eulerian prediction of fluid-particle correlated motion in turbulent two-phase flow. Appl. Sci. Res. 51, 275鈥?83 (1993)MATH CrossRef
    4.Minier, J.-P., Peirano, E.: The PDF approach to polydispersed turbulent two-phase flows. Phys. Rep. 352, 1鈥?14 (2001)MATH MathSciNet CrossRef
    5.Wilson, J.D., Sawford, B.L.: Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound.-Layer Meteorol. 78, 191鈥?10 (1996)CrossRef
    6.Thomson, D.J.: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529鈥?56 (1987)MATH CrossRef
    7.Minier, J.-P., Chibbaro, S., Pope, S.B.: Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26, 113303 (2014)CrossRef
    8.Haworth, D.C., Pope, S.B.: A generalized Langevin model for turbulent flows. Phys. Fluids 29, 387鈥?05 (1986)MATH MathSciNet CrossRef
    9.Reeks, M.W.: On probability density function equations for particle dispersion in a uniform shear flow. J. Fluid Mech. 522, 263鈥?02 (2005)MATH MathSciNet CrossRef
    10.Bocksell, T.L., Loth, E.: Stochastic modeling of particle diffusion in a turbulent boundary layer. Int. J. Multiphase Flow 32, 1234鈥?253 (2006)MATH CrossRef
    11.Arcen, B., Tani猫re, A.: Simulation of a particle-laden turbulent channel flow using an improved stochastic Lagrangian model. Phys. Fluids 21, 043303 (2009)CrossRef
    12.Chibbaro, S., Minier, J.-P.: Langevin PDF simulation of particle deposition in a turbulent pipe flow. J. Aerosol Sci. 39, 555鈥?71 (2008)CrossRef
    13.Liu, B., Agarwal, K.: Experimental observation of aerosol deposition in turbulent flow. J. Aerosol Sci. 5, 145鈥?55 (1974)CrossRef
    14.Wilson, J.D., Legg, B.G., Thomson, D.J.: Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance. Bound.-Layer Meteorol. 27, 163鈥?69 (1983)CrossRef
    15.Thomson, D.J.: Random walk modelling of diffusion in inhomogeneous turbulence. Quart. J. R. Met. Soc. 110, 1107鈥?120 (1984)CrossRef
    16.Dehbi, A.: Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach. Int. J. Multiphase Flow 34, 819鈥?6828 (2008)CrossRef
    17.Dehbi, A.: Validation against DNS statistics of the normalized Langevin model for particle transport in turbulent channel flows. Powder Technol. 200, 60鈥?668 (2010)CrossRef
    18.Tani猫re, A., Arcen, B.: Prediction of a particle-laden turbulent channel flow: Examination of two classes of stochastic dispersion models. Int. J. Multiphase Flow 60, 1鈥?0 (2014)CrossRef
    19.Sikovsky, D.P.h: Singularity of inertial particle concentration in the viscous sublayer of wall-bounded turbulent flows. Flow Turb. Comb. 92, 41鈥?4 (2014)CrossRef
    20.Sawford, B.L.: Generalized random forcing in random walk turbulent dispersion models. Phys. Fluids 29, 3582鈥?585 (1986)CrossRef
    21.Bragg, A., Swailes, D.C., Skartlien, R.: Drift-free kinetic equations for turbulent dispersion. Phys. Rev. E 86, 056306 (2012)CrossRef
    22.Tchen, C.-M.: Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. Thesis, Delft (1947)
    23.Zaichik, L.I., Alipchenkov, V.M., Sinaiski, E.G.: Particles in turbulent flows. Wiley-VCH Verlag (2008)
    24.Swailes, D.C., Sergeev, Y.A., Parker, A.: Chapman-Enskog closure approximation in the kinetic theory of dilute turbulent gas-particulate suspensions. Phys. A 254, 517鈥?47 (1998)CrossRef
    25.Klyatskin, V.I.: Dynamics of stochastic systems. Elsevier, Dordrecht (2005)
    26.Piquet, J.: Turbulent Flows: Models and Physics, 2nd. Springer, Berlin (2001)
    27.Narayanan, C., Lakehal, D., Botto, L., Soldati, A.: Mechanism of the particle deposition in a fully developed turbulent open channel flow. Phys. Fluids 15, 763鈥?75 (2003)CrossRef
    28.Friedlander, S.K., Johnstone, H.F.: Deposition of suspended particles from turbulent gas stream. Ind. Eng. Chem. 49, 1151鈥?156 (1957)CrossRef
    29.Hoyas, S., Jimenez, J.: Scaling of the velocity fluctuations in turbulent channels up to R e t =2003. Phys. Fluids 18, 011705 (2006)CrossRef
    30.Belan, S., Fouxon, I., Falkovich, G.: Localization-delocalization transitions in turbophoresis of inertial particles. Phys. Rev. Lett. 112, 234502 (2014)CrossRef
    31.Mito, Y., Hanratty, T.J.: Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Flow. Turb. Comb. 68, 1鈥?6 (2002)MATH CrossRef
    32.Oesterl茅, B., Zaichik, L.I.: Time scales for predicting dispersion of arbitrary-density particles in isotropic turbulence. Int. J. Multiphase Flow 32, 838鈥?49 (2006)MATH CrossRef
    33.Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. Int. J. Multiphase Flow 34, 879鈥?93 (2008). Datasets are downloaded from the web at http://鈥媍fd.鈥媍ineca.鈥媔t/鈥媍fd/鈥媟epository/鈥?/span> CrossRef
    34.Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81鈥?12 (2008)MATH CrossRef
    35.Oesterl茅, B., Zaichik, L.I.: On Lagrangian time scales and particle dispersion modeling in equilibrium turbulent shear flows. Phys. Fluids 16, 3374鈥?384 (2006)CrossRef
    36.Zaichik, L.I., Alipchenkov, V.M., Avetissian, A.R.: Transport and deposition of colliding particles in turbulent channel flows. Int. J. Heat Fluid Flow 30, 443鈥?51 (2009)CrossRef
    37.Iliopoulos, I., Hanratty, T.J.: Turbulent dispersion in a non-homogeneous field. J. Fluid Mech. 392, 45鈥?1 (1999)MATH CrossRef
    38.Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P., Orlu, R.: Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24, 035110 (2012)CrossRef
    39.Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiphase Flow 29, 1017鈥?038 (2003)MATH CrossRef
    40.Chen, M., McLaughlin, J.B.: A new correlation for the aerosol deposition rate in vertical ducts. J. Colloid Interface Sci. 169, 437鈥?55 (1995)CrossRef
    41.Bragg, A., Swailes, D.C., Skartlien, R.: Particle transport in a turbulent boundary layer: Non-local closures for particle dispersion tensors accounting for particle-wall interactions. Phys. Fluids 24, 103304 (2012)CrossRef
    42.Ferry, J., Rani, S.L., Balachandar, S.: A locally implicit improvement of the equilibrium Eulerian method. Int. J. Multiphase Flow 29, 869鈥?91 (2003)MATH CrossRef
  • 作者单位:Dmitrii Ph. Sikovsky (1) (2)

    1. Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Acad. Lavryentiev Ave. 1, Novosibirsk, 630090, Russian Federation
    2. Novosibirsk State University, Pirogova street 2, Novosibirsk, 630090, Russian Federation
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics
    Automotive Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1987
文摘
We develop a new method for the derivation of stochastic normalized Langevin models for particle dispersion in non-homogeneous turbulent flows. Using the near-equilibrium assumptions we utilize the Chapman-Enskog expansion for the solution of corresponding Fokker-Planck equation to obtain the diffusion matrix and drift vector. To derive the drift vector we use the Furutsu-Novikov approach to obtain the exact asymptotic expression for the drift velocity, which provides the consistency of the proposed model with passive scalar modelling. We show the validity of the near-equilibrium assumptions for so-called diffusional particles in the viscous sublayer, which velocities are comparable to the local fluid velocities, despite the strong inhomogeneity of particle statistics near the wall. This justifies the suitability of proposed approach for the modelling of particle transport in wall-bounded turbulent flows. The results of simulation of particle concentration, second moments of particle velocity and deposition rates in particle-laden channel and pipe flows obtained with the proposed model demonstrate the good agreement with both experimental and DNS/Lagrangian tracking data in a wide range of particle Stokes number. Keywords Particle-laden flows Particle deposition Lagrangian stochastic models Wall-bounded turbulence Particle accumulation
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.