Uncertainty quantification in numerical simulation of particle-laden flows
详细信息    查看全文
  • 作者:Gabriel M. Guerra ; Souleymane Zio ; Jose J. Camata ; Jonas Dias…
  • 关键词:Particle ; laden flows ; Uncertainty quantification ; Scientific workflows ; High performance computing
  • 刊名:Computational Geosciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:265-281
  • 全文大小:3,775 KB
  • 参考文献:1.Allen, J.R.: Principles of physical sedimentology the blackburn press (1985)
    2.Alpak, F.O., Barton, M.D., Caers, J.: A flow-based pattern recognition algorithm for rapid quantification of geologic uncertainty. Comput. Geosci. 14, 603–621 (2010)CrossRef
    3.Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 52(2), 317–355 (2010)
    4.Bauer, G., Gravemeier, V., Wall, W.A.: A Stabilized Finite Element Method for the Numerical Simulation of Multi-Ion Transport in Electrochemical systems. Comput. Methods Appl. Mech. Eng. 223–224, 199–210 (2012)CrossRef
    5.Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)CrossRef
    6.Berliner, L.M.: Physical-statistical modeling in geophysics. J. Geophys. Res. D: Atmos. 74, 2321–2338 (2003)
    7.Bilionis, I., Zabaras, N., Konomi, B.A., Lin, G.: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys. 241, 212–239 (2013)CrossRef
    8.Bonnecaze, R.T., Huppert, H.E., Lister, J.R.: Patterns of sedimentation from polydispersed turbidity currents. Proceedings of the Royal Society: Mathematical, Physical and Engineering Sciences 452(1953), 2247–2261 (1996)CrossRef
    9.Bungartz, H.J., Griebel, M.: Sparse grids, Acta Numerica 13, 147–270 (2004)
    10.Bursik, M., Jones, M., Carn, S., Dean, K., Patra, A., Pavolonis, M., Pitman, E.B., Singh, T., Singla, P., Webley, P., Bjornsson, H., Ripepe, M.: Estimation and propagation of volcanic source parameter uncertainty in an ash transport and dispersal model: application to the Eyjafjallajokull plume of 1416 April 2010. Bull. Volcanol. 74(10), 2321–2338 (2012)CrossRef
    11.Calderer, R., Masud, A.: Residual-based variational multiscale turbulence models for unstructured tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 254, 238–253 (2013)CrossRef
    12.Camata, J.J., Elias, R.N., Coutinho, A.L.G.A.: FEM Simulation of coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Journal of Computational Science and Technology 7(2), 306–321 (2013)CrossRef
    13.Cantero, M.I., Balachandar, S., Garcia, M.H., Bock, D.: Turbulent structures in planar gravity currents and their influence on the flow dynamics. J. Geophys. Res. Oceans 113(C8), 2156–2202 (2008)CrossRef
    14.Chils, J.-P., Delfiner, P.: Geostatistics modeling spatial uncertainty. Wiley (2012)
    15.Codina, R.: Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191(39–40), 4295–4321 (2002)CrossRef
    16.Codina, R., Principe, J., Avila, M.: Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int. J. Numer. Methods Heat Fluid Flow 20, 492–516 (2010)CrossRef
    17.Codina, R., Principe, J., Guasch, O., Badia, S.: Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196(21–24), 2413–2430 (2007)CrossRef
    18.Coutinho, A.L.G.A., Martins, M.A.D., Sydenstricker, R.M., Elias, R.N.: Performance comparison of data-reordering algorithms for sparse matrix–vector multiplication in edge-based unstructured grid computations. Int. J. Numer. Methods Eng. 66(3), 431–460 (2006)CrossRef
    19.Dalbey, K., Patra, A.K., Pitman, B., Bursik, M.I., Sheridan, M.F.: Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J. Geophys. Res. 113, B05203 1–16 (2008)CrossRef
    20.Ehrl, A., Bauer, G., Gravemeier, V., Wall, W.A.: A computational approach for the simulation of natural convection in electrochemical cells. J. Comput. Phys. 235, 764–785 (2013)CrossRef
    21.Elias, R.N., Martins, M.A.D., Coutinho, A.L.G.A.: Parallel Edge-Based inexact newton solution of steady incompressible 3D Navier-Stokes equations. Lect. Notes Comput. Sci 3648, 1237–245 (2005)CrossRef
    22.Elias, R.N., Coutinho, A.L.G.A.: Stabilized edge-based finite element simulation of free-surface flows. Int. J. Numer. Methods Fluids 54(6–8), 965–993 (2007)CrossRef
    23.Elias, R.N., Paraizo, P.L.B., Coutinho, A.L.G.A.: Stabilized edge-based finite element computation of gravity currents in lock-exchange configurations. Int. J. Numer. Methods Fluids 57, 1137–1152 (2008)CrossRef
    24.Elishakoff, I.: Notes on philosophy of the monte carlo method. Int. Appl. Mech. 39, 753–762 (2003)CrossRef
    25.Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Computing in Science and Engineering 10(3), 11–21 (2008)CrossRef
    26.Guerra, G., Rochinha, F.A., Elias, R.N., Oliveira, D., Ogasawara, E., Dias, J.F., Mattoso, M., Coutinho, A.L.G.A.: Uncertainty quantification in computational predictive models for fluid dynamics using a workflow management engine. Int. J. Uncertain. Quantif. 2(1), 53–71 (2012)CrossRef
    27.Guerra, G.M., Zio, S., Camata, J.J., Rochinha, F.A., Elias, R.N., Paraizo, P.L.B., Coutinho, A.L.G.A.: Numerical simulation of particle-laden flows by the residual-based variational multiscale method. Int. J. Numer. Methods Fluids 73(8), 729–774 (2013)
    28.Lesshafft, L., Meiburg, E., Kneller, B., Marsden, A.: Towards inverse modeling of turbidity currents: the inverse lock-exchange problem. Comput. Geosci. 37(4), 521–529 (2011)CrossRef
    29.Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B 63, 425–464 (2001)CrossRef
    30.Lins, E.F., Elias, R.N., Guerra, G.M., Rochinha, F.A., Coutinho, A.L.G.A.: Edge-based finite element implementation of the residual-based variational multiscale method. Int. J. Numer. Methods Fluids 61(1), 1–22 (2009)CrossRef
    31.Lins, E.F., Elias, R.N., Rochinha, F.A., Coutinho, A.L.G.A: Residual-based variational multiscale simulation of free surface flows. Comput. Mech. 54(4), 545–557 (2010)CrossRef
    32.Meiburg, E., Kneller, B.: Mixing and dissipation in particle-laden gravity currents. J. Fluid Mech. 545, 339–372 (2005)CrossRef
    33.Bosse, T., Kleiser, L., Meiburg, E.: Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18, 027102 (2006)CrossRef
    34.Meiburg, E., Kneller, B.: Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135–156 (2010)CrossRef
    35.Nasr-Azadani, Hall, B., Meiburg, E.: Polydisperse turbidity currents propagating over complex topography: comparison of experimental and depth-resolved simulation results. Comput. Geosci. 53, 141–153 (2013)CrossRef
    36.Michael, H.A., Li, H., Boucher, A., Sun, T., Caers, J., Gorelick, S.M.: Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resour. Res. 46(5), 1944–7973 (2010)
    37.Miller, J., Sun, T., Li, H., Stewart, J., Genty, C., Li, D., Lyttle, C.: Direct modeling of reservoirs through forward Process-Based models: can we get there?. International Petroleum Technology Conference, IPTC, 12729 (2008)
    38.Ogasawara, E.S., Dias, J., Silva, V., Chirigati, F.S., Mattoso, M.: Chiron: a parallel engine for algebraic scientific workflows. Concurrency and Computation: Practice and Experience 25(16), 2327–2341 (2013)CrossRef
    39.Ooi, S.K., Constantinescu, G. , Weber, L.: Analysis of the evolution of a high grashof number finite-channel lock-release current from initial stages to the inviscid phase. In: Proceedings of the 7th International Conference on HydroScience and Engineering, Philadelphia, USA, pp 1–10 (2006)
    40.Henniger, R., Bosse, T., Kleiser, L.: LES Of particle settling in homogeneous turbulence. Proc. Appl. Math. Mech. 6, 523–524 (2006)CrossRef
    41.Osypov, K., Ivanova, N., Yang, Y i, Fournier, A., Nichols, D., Bachrach, R., Yarman, C.E., Nikolenko, D.: Uncertainty as a Rosetta Stone Uniting Geoscience Knowledge and E & P Business Value. International Petroleum Technology Conference, IPTC, 16817 (2008)
    42.Principe, J., Codina, R., Henke, F: The dissipative structure of variational multiscale methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 199(13–16), 791–801 (2010)CrossRef
    43.Simpson, J.: Gravity Currents. Cambridge University Press, Cambridge, UK (1997)
    44.Sagaut, P., Deck, S., Terracol, M.: Multiscale and multiresolution approaches in turbulence imperial college press (2006)
    45.Valli, A.M.P., Carey, G.F., Coutinho, A.L.G.A.: Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction–convection–diffusion processes. Int. J. Numer. Methods Fluids 47(3), 201–231 (2005)CrossRef
    46.Xiu, D., Hesthaven, J.S.: High-Order Collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)CrossRef
  • 作者单位:Gabriel M. Guerra (1)
    Souleymane Zio (1)
    Jose J. Camata (3)
    Jonas Dias (4)
    Renato N. Elias (3)
    Marta Mattoso (4)
    Paulo L. B. Paraizo (2)
    Alvaro L. G. A. Coutinho (3)
    Fernando A. Rochinha (1)

    1. Mechanical Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    3. High Performance Computing Center and Department of Civil Engineering, COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    4. Department of Computer Science, COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
    2. Petrobras UO-SEAL Sergipe Operational Unity, Aracaju, Sergipe, Brazil
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
Numerical models can help to push forward the knowledge about complex dynamic physical systems. Modern approaches employ detailed mathematical models, taking into consideration inherent uncertainties on input parameters (phenomenological parameters or boundary and initial conditions, among others). Particle-laden flows are complex physical systems found in nature, generated due to the (possible small) spatial variation on the fluid density promoted by the carried particles. They are one of the main mechanisms responsible for the deposition of sediments on the seabed. A detailed understanding of particle-laden flows, often referred to as turbidity currents, helps geologists to understand the mechanisms that give rise to reservoirs, strategic in oil exploration. Uncertainty quantification (UQ) provides a rational framework to assist in this task, by combining sophisticated computational models with a probabilistic perspective in order to deepen the knowledge about the physics of the problem and to access the reliability of the results obtained with numerical simulations. This work presents a stochastic analysis of sediment deposition resulting from a turbidity current considering uncertainties on the initial sediment concentrations and particles settling velocities. The statistical moments of the deposition mapping, like other important features of the currents, are approximated by a Sparse Grid Stochastic Collocation method that employ a parallel flow solver for the solution of the deterministic problems associated to the grid points. The whole procedure is supported and steered by a scientific workflow management engine designed for high performance computer applications.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.