TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for photocatalytic degradation under visible light irradiation
详细信息    查看全文
  • 作者:Liangpeng Wu ; Mingyue Zhang ; Juan Li ; Chaoping Cen…
  • 关键词:Ti mesh ; TiO2 nanotube ; ZnO nanorod arrays ; CdS ; Photocatalytic activity
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:42
  • 期:5
  • 页码:4569-4580
  • 全文大小:1,371 KB
  • 参考文献:1.J.G. Yu, Y.F. Yu, P. Zhou, W. Xiao, B. Cheng, Appl. Catal. B 156–157, 184 (2014)CrossRef
    2.V.K. Gupta, S.K. Srivastava, D. Mohan, S. Sharma, Waste Manag. 17, 517 (1997)CrossRef
    3.A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 340, 16 (2009)CrossRef
    4.A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, J. Colloid Interface Sci. 342, 518 (2010)CrossRef
    5.S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173, 153 (2012)CrossRef
    6.A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 344, 497 (2010)CrossRef
    7.A. Mittal, D. Kaur, A. Malviya, J. Mittal, V.K. Gupta, J. Colloid Interface Sci. 337, 345 (2009)CrossRef
    8.V.K. Gupta, A. Nayak, Chem. Eng. J. 180, 81 (2012)CrossRef
    9.V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)CrossRef
    10.S. Park, S.K. Choo, G.R. Choi, Y.J. Chung, D. Oh, Y.C. Kim, J.H. Lee, Res. Chem. Intermed. 36, 843 (2010)CrossRef
    11.S.W. Liu, C. Li, J.G. Yu, Q.J. Xiang, CrystEngComm 13, 2533 (2011)CrossRef
    12.V.K. Gupta, S. Agarwal, T.A. Saleh, J. Hazard. Mater. 185, 17 (2011)CrossRef
    13.S. Bhandari, J. Vardia, R.K. Malkani, S.C. Ameta, Toxicol. Environ. Chem. 88, 35 (2006)CrossRef
    14.T.A. Saleh, V.K. Gupta, Environ. Sci. Pollut. Res. 19, 1224 (2012)CrossRef
    15.M. Mo, J.S. Tang, M. Zheng, Q. Lu, Y. Chen, H.R. Guan, Res. Chem. Intermed. 39, 3981 (2013)CrossRef
    16.J.M. Azpiroz, F. De, Angelis. J. Phys. Chem. A 118, 5885 (2014)
    17.Y. Hu, X.H. Gao, L. Yu, Y.R. Wang, J.Q. Ning, S.J. Xu, X.W. Lou, Angew. Chem. Int. Ed. 52, 5636 (2013)CrossRef
    18.Y. Tak, S.J. Hoog, J.S. Lee, K. Yong, J. Mater. Chem. 19, 5945 (2009)CrossRef
    19.X.W. Wang, G. Liu, G.Q. Lu, H.M. Cheng, Hydrogen Energy 35, 8199 (2010)CrossRef
    20.K. Zhao, Z.M. Wu, R. Tang, Y.D. Jiang, Y.X. Lu, Res. Chem. Intermed. 41, 4405 (2015)CrossRef
    21.A.K. Jain, V.K. Gupta, A. Bhatnagar, Suhas. Sep. Sci. Technol. 38, 463 (2003)CrossRef
    22.M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, C. Lee, J.Y. Kim, J. Sol–Gel. Sci. Technol. 64, 750 (2012)CrossRef
    23.T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371, 101 (2012)CrossRef
    24.H. Khania, M.K. Rofoueia, P. Arab, V.K. Gupta, Z. Vafaei, J. Hazard. Mater. 183, 402 (2010)CrossRef
    25.H. Yu, S.Q. Zhang, H.J. Zhao, G. Will, P. Liu, Electrochim. Acta 54, 1319 (2009)CrossRef
    26.F. Yang, J.Y. Yao, F.L. Liu, H.C. He, M. Zhou, P. Xiao, Y.H. Zhang, J. Mater. Chem. A 1, 594 (2013)CrossRef
    27.L.P. Wu, J. Li, S.H. Zhang, L.Z. Long, X.J. Li, C.P. Cen, J. Phys. Chem. C 117, 22591 (2013)CrossRef
    28.G.F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J.L. Tirado, T. Djenizian, Electrochim. Acta 54, 4262 (2009)CrossRef
    29.J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, J. Li, A.C.S. Appl, Mater. Interfaces 4, 171 (2012)CrossRef
    30.Z.J. Zhang, Q.Y. Zeng, S.L. Chou, X.J. Li, H.J. Li, K. Ozawad, H.K. Liu, J.Z. Wang, Electrochim. Acta 133, 570 (2014)CrossRef
    31.Q.F. Zhang, G.Z. Cao, Nano Today 6, 91 (2011)CrossRef
    32.G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, J. Mater. Chem. 19, 8378 (2009)CrossRef
    33.Q.Y. Zeng, M. Xi, W. Xu, X.J. Li, Mater. Corros. 64, 1001 (2012)CrossRef
    34.F.L. Zhou, X.J. Li, J. Shu, J. Wang, J. Photochem. Photobiol. A 219, 132 (2011)CrossRef
    35.L.P. Wu, Y.L. Zhang, L.Z. Long, C.P. Cen, X.J. Li, RSC Adv. 4, 20716 (2014)CrossRef
    36.T.T. Vu, L. DelRío, T. Valdés-Solís, G. Marbán, Mater. Res. Bull. 47, 1577 (2012)CrossRef
    37.Y.N. Zhang, G.H. Zhao, Y.Z. Lei, P.Q. Li, M.F. Li, Y.N. Jin, B.Y. Lv, ChemPhysChem 11, 3491 (2010)CrossRef
    38.R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109, 24254 (2005)CrossRef
    39.R.C. Pawar, C.S. Lee, Appl. Catal. B 144, 57 (2014)CrossRef
    40.S.J. Roh, R.S. Mane, S.K. Min, W.J. Lee, C.D. Lokhande, S.H. Han, Appl. Phys. Lett. 89, 253512 (2006)CrossRef
    41.V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. Eng. C 31, 1062 (2011)CrossRef
    42.M. Liu, N.L. Snapp, H. Park, Chem. Sci. 2, 80 (2011)CrossRef
    43.V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Mater. Sci. Eng. C 32, 12 (2012)CrossRef
    44.S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666 (2011)CrossRef
  • 作者单位:Liangpeng Wu (1)
    Mingyue Zhang (2)
    Juan Li (1)
    Chaoping Cen (3)
    Xinjun Li (1)

    1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People’s Republic of China
    2. Department of Chemical Engineering, Guangdong Industry Technical College, Guangzhou, 510030, People’s Republic of China
    3. The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou, 510655, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
The three-dimensional (3D) TiO2 nanotube arrays (TNTA) were prepared by electrochemical anodization of Ti mesh in a mixed electrolyte solution of (NH4)2SO4 and NH4F. Well-defined CdS-sensitized ZnO nanorod arrays (ZNRA/CdS) were successfully built on TNTA by the hydrothermal method and chemical bath deposition. The as-prepared samples were characterized by means of XRD, FESEM, and UV–Vis. The photocatalytic activities of the samples were evaluated by measuring the photodegradation of methylene blue (MB) in aqueous solution under visible light irradiation. The photocatalytic efficiencies for MB degradation were 49 and 60 % for Ti mesh/ZNRA/CdS and Ti mesh/TNTA/ZNRA/CdS after irradiation for 6 h, respectively. This can be attributed to the presence of TNTA at the bottom of a ZNRA/CdS composite, which provides a direct pathway for photoinjected electrons transferring along the photoanode to enhance charge-collection efficiency and consequently reduce electron–hole recombination. Furthermore, it can enlarge the practical applications range of TiO2 due to its 3D nanoarray structure with good light-harvesting ability and flexibility.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.