Hybrid Graphene Oxide and NTC Semiconductor Material Absorbs and Transform Light Energy via a Novel Surface Nanoscale Plasmon Mechanical
详细信息    查看全文
  • 作者:Lihong Su ; Caixia Wan ; Pengling Yang ; Yong Wu ; Junjie Wu ; Wenyan Duan…
  • 关键词:Surface plasmon ; Nanometer particles ; Graphene oxide ; Infrared laser ; Energy transform
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:53-60
  • 全文大小:980 KB
  • 参考文献:1.Hummers S, Hoffman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef
    2.Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide [J]. ACS Nano 4(8):4806–4814CrossRef
    3.Warner JH, Ru¨ mmeli MH, Ge L, Gremming T, Montanari B, Harrison NM, Bu¨ chner B, Briggs GAD (2009) Nat Nanotechnol 4:500–504CrossRef
    4.Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Process-able aqueous dispersions of graphenenanosheets. Nat Nanotechnol 3:101–105CrossRef
    5.Yokoyama T, Abe Y, Meguro T, Komeya K, Kondo K, Kaneko S (1996) Preparation and electrical properties of sintered bodies composed of mono-phase spinel Mn(2-x)Co2Ni(1-x)O4 (0 < x < 1) derived from rock-salt-type oxides. J Appl Phys 35:5775–5780CrossRef
    6.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRef
    7.Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063CrossRef
    8.Novoselov K, Geim A, Morozov S et al (2004) Electric field effect in atomically thin carbon films [J]. Science 306:666–669CrossRef
    9.Nikolic MV, Paraskevopoulos KM, Aleksic’ OS et al (2007) Far infrared reflectance of sintered nickel manganite samples for negative temperature coefficient thermistors. Mater Res Bull 42:1492–1498CrossRef
    10.Dreyer DR, Park S, Bielawski CW, Ruoff R (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
    11.Ostrovsky PM, Gornyi IV, Mirlin AD (2006) Electron transport in disordered graphene. Phys Rev B 74:235443CrossRef
    12.Ferrari AC et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef
    13.Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749–758CrossRef
    14.Hontoria- Lucas C, Lo’ pez-Peinado A, Lo’pez-Gonza’lez J, Rojas-Cervantes M, Martı’n-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRef
    15.Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef
    16.Woodruff DP (ed)"The chemical physics of solid surfaces", Vol. 10, Elsevier, 2002
    17.de García Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1(3):135–152
    18.de Csete Györgyfalva GDC, Reaney IM (2001) Decomposition of NiMn2O4 spinel: an NTC thermistor material[J]. J Eur Ceram Soc 21:2145–2148CrossRef
    19.Pandey D, Reifenberger R, Piner R (2008) Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602(9):1607–1611CrossRef
    20.Gao YQ, Huang ZM, Hou Y, Wu J, Ge YJ, Chu JH (2009) Optical properties of Mn1.56Co0.96Ni0.48O4 films studies by spectroscopic ellipsometry. Appl Phys Lett 94
    21.Callaway J (1974) Quantum theory of the solid state. Academic Press, New York, pp 516–520
    22.Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRef
    23.Polman A, Atwater HA (2005) Plasmonics: optics at the nanoscale. Mater Today 8:56CrossRef
    24.Oppens FHL, Chang DE, de García Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRef
    25.Yan H et al (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334CrossRef
    26.Yan H et al (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photon 7:394–399CrossRef
    27.Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541–2547CrossRef
    28.Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRef
  • 作者单位:Lihong Su (1)
    Caixia Wan (1)
    Pengling Yang (2) (3)
    Yong Wu (2) (3)
    Junjie Wu (2) (3)
    Wenyan Duan (1)
    Lihua Su (4)

    1. Department of Applying Chemistry, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, China
    2. Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
    3. State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, P.O. Box 69-18, Xi’an, 710024, China
    4. Xi’an Communications Institute, 710106, Xi’an, Shaanxi, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Graphene oxide (GO) was prepared using the improved Hummer method, and mono-dispersed manganese cobalt nickel oxide (MCN) semiconductor nanometer particles were synthesized and coated with GO. Under 980-nm infrared laser excitation, this novel hybrid material demonstrated nanometer-scale surface plasmon resonance. The same mechanism has previously only been reported in good conductors. Although the MCN semiconductor is a negative temperature coefficient material, it can realize the same effect as a good conductor. The experimental data indicated that the hybrid material absorbed infrared laser photothermal energy with a transformation efficiency more than fourfold larger than that of pure mono-disperse MCN semiconductor nanopowder. The chain heat conductivity velocity of the hybrid material compares favorably with that of metal in that it alters the laser radiation energy heat transfer method on the surface. The hybrid material is one new kind of photothermal energy transfer material by new chain nanoscale surface plasmon mechanical, it can absorb sunlight and ultra-red light totally, and is one excellent energy transform and absorb material for sunlight. Keywords Surface plasmon Nanometer particles Graphene oxide Infrared laser Energy transform
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.