DFT investigation on dihydrogen-bonded amine-borane complexes
详细信息    查看全文
  • 作者:Shihai Yan ; Hongmei Zou ; Wukui Kang ; Lixiang Sun
  • 关键词:Amine ; borane ; Dihydrogen bond ; Dimerization ; NMR parameters ; Substituent group
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 全文大小:1,262 KB
  • 参考文献:1.Park S, Ramachandran R, Lough AJ, Morris RH (1994) A new type of intramolecular H…H…H interaction involving N-H…H(Ir)…H-N atoms. Crystal and molecular structure of [IrH(η1-SC5H4NH)2(η2-SC5H4N)(PCy3)]BF4·0.72CH2Cl2. J Chem Soc Chem Comm 2201–2202
    2.Lough AJ, Park S, Ramachandran R, Morris RH (1994) Switching on and off a new intramolecular hydrogen-hydrogen interaction and the heterolytic splitting of dihydrogen. Crystal and molecular structure of [Ir{H(η1-SC5H4NH)}2(PCy3)]BF4·2.7CH2Cl2. J Am Chem Soc 116:8356–8857CrossRef
    3.Richardson TB, deGala S, Crabtree RH, Siegbahn PEM (1995) Unconventional hydrogen bonds: intermolecular B-H…H-N interactions. J Am Chem Soc 117:12875–12876CrossRef
    4.Alkorta I, Blanco F, Elguero J (2010) Dihydrogen bond cooperativity in aza-borane derivatives. J Phys Chem A 114:8457–8462CrossRef
    5.Yan SH, Bu YX, Cukier RI (2006) Electron bridging dihydrogen bond in the imidazole-contained anion derivatives. J Chem Phys 124:124314–124323CrossRef
    6.Grabowski S, Sokalski WA, Leszczynski J (2004) Nature of X-H+δ…-δH-Y dihydrogen bonds and X-H…σ interactions. J Phys Chem A 108:5823–5830CrossRef
    7.Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Amine-and phosphine-borane adducts: new interest in old molecules. Chem Rev 110:4023–4078CrossRef
    8.Staubitz A, Robertson APM, Manners I (2010) Ammonia-borne and related compounds as dihydrogen sources. Chem Rev 110:4079–4124CrossRef
    9.Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637
    10.Sewell LJ, Lloyd-Jones GC, Weller AS (2012) Development of a generic mechanism for the dehydrocoupling of amine-boranes: a stoichiometric, catalytic, and kinetic study of H3B NMe2H using the [Rh(PCy3)2]+ fragment. J Am Chem Soc 134:3598–3610CrossRef
    11.Cramer CJ, Gladfelter WL (1997) Ab initio characterization of [H3N·BH3]2, [H3N·AlH3]2, [H3N·GaH3]2. Inorg Chem 36:5358–5362CrossRef
    12.Guo YH, Wu H, Zhou W, Yu XB (2011) Dehydrogenation tuning of ammine borohydrides using double-metal cations. J Am Chem Soc 133:4690–4693CrossRef
    13.Golub IE, Gulyaeva ES, Filippov OA, Dyadchenko VP, Belkova NV, Epstein LM, Arkhipov DE, Shubina ES (2015) Dihydrogen bond intermediated alcoholysis of dimethylamine-borane in nonaqueous media. J Phys Chem A 119:3853–3868CrossRef
    14.Brown MP, Heseltin RW (1968) Coordinated BH3 as a proton acceptor group in hydrogen bonding. Chem Commun 1551–1552
    15.Brown MP, Heseltin RW, Smith PA, Walker PJ (1970) J Chem Soc A 410
    16.Brown MP, Walker PJ (1974) Hydrogen bonds between coordinated NH3 and BH2 groups and OH groups. Thermodynamics of formation by infrared spectroscopy. Spectrochim Acta A 30:1125–1131CrossRef
    17.Merten C, Berger CJ, McDonald R, Xu YJ (2014) Evidence of dihydrogen bonding of a chiral amine-borane complex in solution by VCD spectroscopy. Angew Chem Int Edit 2014(53):9940–9943CrossRef
    18.O’Malley PJ (1998) Hybrid density functional studies of the oxidation of phenol-imidazole hydrogen-bonded complexes: a model for tyrosine oxidation in oxygenic photosynthesis. J Am Chem Soc 120:11732–11737CrossRef
    19.Yan SH, Bu YX (2004) Alteration of imidazole dimer on oxidation or water ligation. J Phys Chem B 108:13874CrossRef
    20.Yan SH, Bu YX (2005) Coupling properties of imidazole dimer radical cation assisted by embedded water molecule: toward understanding of interaction character of hydrogen-bonded histidine residue side-chains. J Chem Phys 122:184324–184331
    21.Yan SH, Zhang L, Cukier RI, Bu YX (2007) Exploration on regulating factors for proton transfer along hydrogen-bonded water chains. Chem Phys Chem 8:944–954
    22.Gutsev GL, Bartlett RJJ (1996) A theoretical study of the valence- and dipole-bound states of the nitromethane anion. J Chem Phys 105:8785–8792CrossRef
    23.Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF III, Nandi S, Ellison GB (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102:231–282CrossRef
    24.Ciobanu CV, Ojamae L, Shavitt I, Singer SJ (2000) Structure and vibrational spectra of H+(H2O)8: is the excess proton in a symmetrical hydrogen bond? J Chem Phys 113:5321–5330CrossRef
    25.Christie RA, Jordan KD (2001) Theoretical investigation of the H3O+(H2O)4 cluster. J Phys Chem A 105:7551–7558CrossRef
    26.Mella M, Kuo JL, Clary DC, Klein ML (2005) Nuclear quantum effects on the structure and energetics of (H2O)6H+. Phys Chem Chem Phys 7:2324–2332CrossRef
    27.Sychrovsky V, Grafenstein J, Cremer D (2000) Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory. J Chem Phys 113:3530–3547CrossRef
    28.Helgaker T, Watson M, Handy NC (2000) Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized graient approximation and hybrid levels of density-functional theory. J Chem Phys 113:9402–9409CrossRef
    29.Sychrovsky V, Sponer J, Hobza P (2004) Theoretical calculation of the NMR spin−spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine. J Am Chem Soc 126:663–672CrossRef
    30.Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRef
    31.Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509CrossRef
    32.Ramsey NF (1953) Electron coupled interactions between nuclear spins in molecules. Phys Rev 91:303–307CrossRef
    33.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01; Gaussian Inc, Wallingford
    34.Rao BK, Jena P, Burkart S, Gantefor G, Seifert G (2001) AlH3 and Al2H6: magic clusters with unmagical properties. Phys Rev Lett 86:692–695CrossRef
    35.Kar T, Scheiner S (2003) Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J Chem Phys 119:1473–1482CrossRef
    36.Li JS, Zhao F, Jing FQ (2002) B-H δ- σ bond as dihydrogen bond acceptor: some theoretical observations and predictions. J Chem Phys 116:25–32CrossRef
    37.Patwari GN, Ebata T, Mikami N (2002) Dihydrogen bonded phenol-borane-dimethylamine complex: an experimental and theoretical study. J Chem Phys 116:6056–6063CrossRef
    38.Patwari GN, Ebata T, Mikami N (2001) Gas phase dihydrogen bonded phenol-borane-trimethylamine complex. J Chem Phys 114:8877–8879CrossRef
    39.Wu D, Li Y, Li Z, Chen W, Li ZR, Sun CC (2006) Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n −
    (n = 3, 4). J Chem Phys 124:054310–054319CrossRef
    40.Monde K, Miura N, Hashimoto M, Taniguchi T, Inabe T (2006) Conformational analysis of chiral helical perfluoroalkyl chains by VCD. J Am Chem Soc 128:6000–6001CrossRef
    41.Hopmann KH, Sebestik J, Novotna J, Stensen W, Urbanova M, Svenson J, Svendsen JS, Bour P, Ruud K (2012) Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy. J Org Chem 77:858–869CrossRef
    42.Merten C, Hiller K, Xu Y (2012) Effects of electron configuration and coordination number on the vibrational circular dichroism spectra of metal complexes of trans-1, 2-diaminocyclohexane. Phys Chem Chem Phys 14:12884–12891CrossRef
    43.Merten C, Reuther JF, Desousa JD, Novak BM (2014) Identification of the specific, shutter-like conformational reorientation in a chiroptical switching polycarbodiimide by VCD spectroscopy. Phys Chem Chem Phys 14:11456–11460CrossRef
  • 作者单位:Shihai Yan (1)
    Hongmei Zou (2)
    Wukui Kang (1)
    Lixiang Sun (3)

    1. College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
    2. College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
    3. College of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The DFT method has been employed in the exploration on dihydrogen-bonded amine-borane complexes, with a special emphasis on the dimerization and substituent group effect. Stable dihydrogen bonded complexes can be generated from these amine-borane monomers with the appearance of NHδ+…Hδ-B interactions. The binding energy decreases gradually with the increase of the steric effect of the substituents. The substituent group number mainly varies the C-N bond length. The dimerization generates close H…H and influences predominantly the N-B distance. The effect of dimerization on IR and vibrational circular dichroism (VCD) spectra is stronger than that of the number of substituent groups, which leads to distinct NBO charge variation on α-C. Both the substituent group number and dimerization enhance the chemical shift difference between hydrogen atoms covalently bonded to N and B, Δδ H-H, which can be hired as an index for structural determination. It is proposed that amine-borane complexes with more substituent groups in higher degree of polymerization are potentially interesting materials for hydrogen storage.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.