Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation
详细信息    查看全文
  • 作者:Christine E Schnitzler (1)
    David K Simmons (2)
    Kevin Pang (3)
    Mark Q Martindale (2)
    Andreas D Baxevanis (1)

    1. Genome Technology Branch
    ; National Human Genome Research Institute ; National Institutes of Health ; Bethesda ; MD ; USA
    2. Whitney Laboratory for Marine Bioscience
    ; University of Florida ; St. Augustine ; FL ; USA
    3. Sars International Centre for Marine Molecular Biology
    ; University of Bergen ; Bergen ; Norway
  • 关键词:Sox ; Ctenophore ; Lobate ; Mnemiopsis leidyi ; Cell proliferation ; Stem cell
  • 刊名:EvoDevo
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:5
  • 期:1
  • 全文大小:856 KB
  • 参考文献:1. Chew, L-J, Gallo, V (2009) The Yin and Yang of Sox proteins: activation and repression in development and disease. J Neurosci Res 87: pp. 3277-3287 CrossRef
    2. Wegner, M (2010) All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 42: pp. 381-390 CrossRef
    3. Bowles, J, Schepers, G, Koopman, P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227: pp. 239-255 CrossRef
    4. Wegner, M, Stolt, CC (2005) From stem cells to neurons and glia: a Soxist鈥檚 view of neural development. Trends Neurosci 28: pp. 583-588 CrossRef
    5. Dong, C, Wilhelm, D, Koopman, P (2004) Sox genes and cancer. Cytogenet Genome Res 105: pp. 442-447 CrossRef
    6. Aaboe, M (2006) SOX4 Expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 66: pp. 3434-3442 CrossRef
    7. Wilson, M, Koopman, P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12: pp. 441-446 CrossRef
    8. Kamachi, Y, Uchikawa, M, Kondoh, H (2000) Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16: pp. 182-187 CrossRef
    9. Kondoh, H, Kamachi, Y (2010) SOX鈥損artner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 42: pp. 391-399 CrossRef
    10. Sebe-Pedros, A, de Mendoza, A, Lang, BF, Degnan, BM, Ruiz-Trillo, I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28: pp. 1241-1254 CrossRef
    11. Larroux, C, Fahey, B, Liubicich, D, Hinman, VF, Gauthier, M, Gongora, M, Green, K, W枚rheide, G, Leys, SP, Degnan, BM (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8: pp. 150-173 CrossRef
    12. Fortunato, S, Adamski, M, Bergum, B, Guder, C, Jordal, S, Leininger, S, Zwafink, C, Rapp, HT, Adamska, M (2012) Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns. Evol Dev 3: pp. 14
    13. Jager, M, Qu茅innec, E, Houliston, E, Manuel, M (2006) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39: pp. 468-477 CrossRef
    14. Jager, M, Qu茅innec, E, Chiori, R, Le Guyader, H, Manuel, M (2008) Insights into the early evolution of SOX genes from expression analyses in a ctenophore. J Exp Zool 310B: pp. 650-667 CrossRef
    15. Hejnol, A, Obst, M, Stamatakis, A, Ott, M, Rouse, GW, Edgecombe, GD, Martinez, P, Baguna, J, Bailly, X, Jondelius, U, Wiens, M, Muller, WEG, Seaver, E, Wheeler, WC, Martindale, MQ, Giribet, G, Dunn, CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B Biol Sci 276: pp. 4261-4270 CrossRef
    16. Dunn, CW, Hejnol, A, Matus, DQ, Pang, K, Browne, WE, Smith, SA, Seaver, E, Rouse, GW, Obst, M, Edgecombe, GD, S酶rensen, MV, Haddock, SHD, Schmidt-Rhaesa, A, Okusu, A, Kristensen, RM, Wheeler, WC, Martindale, MQ, Giribet, G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: pp. 745-749 CrossRef
    17. Ryan, JF, Pang, K, Schnitzler, CE, Nguyen, A-D, Moreland, RT, Simmons, DK, Koch, BJ, Francis, WR, Havlak, P, Smith, SA, Putnam, NH, Haddock, SH, Dunn, CW, Wolfsberg, TG, Mullikin, JC, Martindale, MQ, Baxevanis, AD (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342: pp. 1242592 CrossRef
    18. Hernandez-Nicaise, ML Ctenophora. In: Harrison, W eds. (1991) Microscopic Anatomy of the Invertebrates Volume II: Placozoa, Porifera, Cnidaria and Ctenophora. Wiley-Liss Inc, New York, pp. 359-418
    19. Tamm, SL, Tamm, S (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb Plates. J Cell Biol 89: pp. 495-509 CrossRef
    20. Horridge, GA (1964) Presumed photoreceptive cilia in a ctenophore. Q J Microsc Sci 105: pp. 311-317
    21. Chun, C (1880) Die Ctenophoren des Golfo von Neapel und der angrenzenden Meeres-Abschnitte. Flora und Fauna des Golfes von Neapel. Engelmann, Leipzig, pp. 1-311
    22. Schnitzler, CE, Pang, K, Powers, ML, Reitzel, AM, Ryan, JF, Simmons, D, Tada, T, Park, M, Gupta, J, Brooks, SY, Blakesley, RW, Yokoyama, S, Haddock, SH, Martindale, MQ, Baxevanis, AD (2012) Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol 10: pp. 107 CrossRef
    23. Tamm, SL Ctenophora. In: Shelton, G eds. (1982) Electrical Conduction and Behaviour in Simple Invertebrates. Clarendon Press, Oxford
    24. Jager, M, Chiori, R, Ali茅, A, Dayraud, C, Qu茅innec, E, Manuel, M (2011) New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (M眉ller, 1776). J Exp Zool B Mol Dev Evol 316: pp. 171-187 CrossRef
    25. Freeman, G, Reynolds, GT (1973) The development of bioluminescence in the ctenophore Mnemiopsis leidyi. Dev Biol 31: pp. 61-100 CrossRef
    26. Martindale, M, Henry, JQ Ctenophorans, the Comb Jellies. In: Gilbert, SF, Raunio, AM eds. (1997) Embryology: Constructing the Organism. Sinauer, Sunderland, MA, pp. 87-111
    27. Martindale, MQ, Henry, JQ (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214: pp. 243-257 CrossRef
    28. Reverberi, G, Reverberi, G Ctenophores. In: Reverberi, G eds. (1971) Experimental Embryology of Marine and Freshwater Invertebrates. North Holland Publishing Company, Amsterdam, pp. 85-103
    29. Pianka, HD Ctenophora. In: Giese, AC, Pearse, JS eds. (1974) Reproduction of Marine Invertebrates. Academic Press Inc, New York, pp. 201-265
    30. Martindale, MQ (1987) Larval reproduction in the ctenophore Mnemiopsis mccradyi (order Lobata). Mar Biol 94: pp. 409-414 CrossRef
    31. Ali茅, A, Lecl猫re, L, Jager, M, Dayraud, C, Chang, P, Le Guyader, H, Qu茅innec, E, Manuel, M (2011) Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of 鈥済ermline genes鈥?with stemness. Dev Biol 350: pp. 183-197 CrossRef
    32. Hernandez-Nicaise, ML, Franc, JM Embranchement des Ct茅naires. Morphologie, Biologie, 脡cologie. In: Grass茅, PP eds. (1993) Trait茅 de Zoologie Anatomie, Syst茅matique, Biologie Tome III, Fascicule 2 (Cnidaires, Ct茅naires). Masson, Paris, pp. 943-1055
    33. Magie, CR, Pang, K, Martindale, MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215: pp. 618-630 CrossRef
    34. Shinzato, C, Iguchi, A, Hayward, DC, Technau, U, Ball, EE, Miller, DJ (2008) Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. BMC Evol Biol 8: pp. 311 CrossRef
    35. Jager, M, Qu茅innec, E, Le Guyader, H, Manuel, M (2011) Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evol Dev 2: pp. 12
    36. King, N, Westbrook, MJ, Young, SL, Kuo, A, Abedin, M, Chapman, J, Fairclough, S, Hellsten, U, Isogai, Y, Letunic, I, Marr, M, Pincus, D, Putnam, N, Rokas, A, Wright, KJ, Zuzow, R, Dirks, W, Good, M, Goodstein, D, Lemons, D, Li, W, Lyons, JB, Morris, A, Nichols, S, Richter, DJ, Salamov, A, Sequencing, J, Bork, P, Lim, WA, Manning, G (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: pp. 783-788 CrossRef
    37. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    38. Abascal, F, Zardoya, R, Posada, D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: pp. 2104-2105 CrossRef
    39. Le, SQ, Gascuel, O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: pp. 1307-1320 CrossRef
    40. Stamatakis, A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: pp. 2688-2690 CrossRef
    41. Ronquist, F, Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: pp. 1572-1574 CrossRef
    42. Nylander, JAA, Wilgenbusch, JC, Warren, DL, Swofford, DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: pp. 581-583 CrossRef
    43. FigTree, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/
    44. Pang, K, Martindale, MQ (2008) Comb jellies (ctenophora): a model for basal metazoan evolution and development. Cold Spring Harb Protoc 2008: pp. pdb.emo106
    45. Smith, SA, Dunn, CW (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: pp. 715-716 CrossRef
    46. Pang, K, Ryan, JF, Baxevanis, AD, Martindale, MQ (2011) Evolution of the TGF-尾 signaling pathway and its potential role in the Ctenophore. Mnemiopsis leidyi. PLoS One 6: pp. e24152 CrossRef
    47. Philippe, H, Derelle, R, Lopez, P, Pick, K, Borchiellini, C, Boury-Esnault, N, Vacelet, J, Renard, E, Houliston, E, Qu茅innec, E, Da Silva, C, Wincker, P, Le Guyader, H, Leys, S, Jackson, DJ, Schreiber, F, Erpenbeck, D, Morgenstern, B, W枚rheide, G, Manuel, M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19: pp. 706-712 CrossRef
    48. Schierwater, B, Eitel, M, Jakob, W, Osigus, H-J, Hadrys, H, Dellaporta, SL, Kolokotronis, S-O, Desalle, R (2009) Concatenated analysis sheds light on early metazoan evolution and fuels a modern 鈥淯rmetazoon鈥?hypothesis. PLoS Biol 7: pp. e20 CrossRef
    49. Nosenko, T, Schreiber, F, Adamska, M, Adamski, M, Eitel, M, Hammel, J, Maldonado, M, Muller, WEG, Nickel, M, Schierwater, B, Vacelet, J, Wiens, M, W枚rheide, G (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 67: pp. 223-233 CrossRef
    50. Martindale, MQ (1986) The ontogeny and maintenance of adult symmetry properties in the ctenophore, Mnemiopsis mccradyi. Dev Biol 118: pp. 556-576 CrossRef
    51. Coonfield, BR (1936) Regeneration in Mnemiopsis leidyi, Agassiz. Biol Bull 71: pp. 421-428 CrossRef
    52. Molofsky, AV, Pardal, R, Morrison, SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16: pp. 700-707 CrossRef
    53. Sarkar, A, Hochedlinger, K (2013) The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12: pp. 15-30 CrossRef
    54. Extavour, CG, Akam, M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130: pp. 5869-5884 CrossRef
    55. Baker, LD, Reeve, MR (1974) Laboratory culture of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity. Mar Biol 26: pp. 57-62 CrossRef
    56. Pang, K (2010) Understanding early animal evolution: genomics and cell fate specification in the ctenophore, Mnemiopsis leidyi. University of Hawai鈥檌 at Manoa, Honolulu, HI
    57. Phochanukul, N, Russell, S (2010) No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol 42: pp. 453-464 CrossRef
  • 刊物主题:Developmental Biology; Evolutionary Biology; Zoology; Paleontology; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:2041-9139
文摘
Background The Sox genes, a family of transcription factors characterized by the presence of a high mobility group (HMG) box domain, are among the central groups of developmental regulators in the animal kingdom. They are indispensable in progenitor cell fate determination, and various Sox family members are involved in managing the critical balance between stem cells and differentiating cells. There are 20 mammalian Sox genes that are divided into five major groups (B, C, D, E, and F). True Sox genes have been identified in all animal lineages but not outside Metazoa, indicating that this gene family arose at the origin of the animals. Whole-genome sequencing of the lobate ctenophore Mnemiopsis leidyi allowed us to examine the full complement and expression of the Sox gene family in this early-branching animal lineage. Results Our phylogenetic analyses of the Sox gene family were generally in agreement with previous studies and placed five of the six Mnemiopsis Sox genes into one of the major Sox groups: SoxB (MleSox1), SoxC (MleSox2), SoxE (MleSox3, MleSox4), and SoxF (MleSox5), with one unclassified gene (MleSox6). We investigated the expression of five out of six Mnemiopsis Sox genes during early development. Expression patterns determined through in situ hybridization generally revealed spatially restricted Sox expression patterns in somatic cells within zones of cell proliferation, as determined by EdU staining. These zones were located in the apical sense organ, upper tentacle bulbs, and developing comb rows in Mnemiopsis, and coincide with similar zones identified in the cydippid ctenophore Pleurobrachia. Conclusions Our results are consistent with the established role of multiple Sox genes in the maintenance of stem cell pools. Both similarities and differences in juvenile cydippid stage expression patterns between Mnemiopsis Sox genes and their orthologs from Pleurobrachia highlight the importance of using multiple species to characterize the evolution of development within a given phylum. In light of recent phylogenetic evidence that Ctenophora is the earliest-branching animal lineage, our results are consistent with the hypothesis that the ancient primary function of Sox family genes was to regulate the maintenance of stem cells and function in cell fate determination.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.