Evaluation of different laser wavelengths on ablation lesion and residual thermal injury in intervertebral discs of the lumbar spine
详细信息    查看全文
  • 作者:Hélio Plapler ; Marília W. Mancini ; Valéria R. G. Sella…
  • 关键词:Intervertebral disc ; Nucleotomy ; Percutaneous discectomy ; Laser surgery
  • 刊名:Lasers in Medical Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:31
  • 期:3
  • 页码:421-428
  • 全文大小:1,904 KB
  • 参考文献:1.Choy DSJ (2004) Percutaneous laser disc decompression: a 17-year experience. Photomed Laser Surg 22:407CrossRef PubMed
    2.Choy DSJ, Hellinger J, Hellinger S, Tassi GP, Lee SH (2009) 23rd anniversary of percutaneous laser disc decompression (PLDD). Photomed Laser Surg 27(4):535–8CrossRef PubMed
    3.Choy DSJ, Michelsen J, Getrajdman D (1992) Percutaneous laser disc decompression: an update—Spring 1992. J Clin Laser Med Surg 10:177–84PubMed
    4.Choy D (2003) Percutaneous laser disc decompression: a practical guide. Springer, New York
    5.Gupta AK, Bodhey NK, Jayasree RS, Kapilamoorthy T, Kesavadas C, Krishnamoorthy T (2006) Percutaneous laser disc decompression: Clinical experience at SCTIMST and long term follow up. Neurol India 54:164–7CrossRef PubMed
    6.Schenk B, Brouwer PA, Peul WC, van Buchem MA (2006) Percutaneous laser disc decompression: a review of the literature. Am J Neuroradiol 27:232PubMed
    7.Schenk B, Brouwer PA, Peul WC, van Buchem MA (2006) Experimental basis of percutaneous laser disc decompression (PLDD): a review of literature. Lasers Med Sci 21:245CrossRef PubMed
    8.Morelet A, Boyer F, Vitry F, Ackah-Miezan S, Berquet R, Langlois S (2007) Efficacy of percutaneous laser disc decompression for lumbar disc hernia due to radiculalgia (149 patients). Presse Med 36(11 Pt 1):1527–35CrossRef PubMed
    9.Menchetti P, Bini W, Canero G, Menotti F (2008) Diode laser Percutaneous Discectomy: Multicenter study at 4 years follow up. Int J Minim Invasive Spinal Technol Suppl I-to IJMIST [serial on the Internet] 1 (2)
    10.Siebert W (1999) Percutaneous nucleotomy procedures in lumbar intervertebral disk displacement. Curr Status Orthop 28(7):598–608
    11.Choy D, Case R, Fielding W, Hughes J, Liebler WPA (1987) Percutaneous laser lumbar disks nucleolysis. N Engl J Med 317:771–2CrossRef PubMed
    12.Nachemson A (1961) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus annulus fibrosus. Acta Orthop Scand 33:183–207CrossRef
    13.Nachemson A (1965) In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand 36(4):418–34CrossRef PubMed
    14.Siebert W (1993) Percutaneous laser disc decompression: the European experience. Spine State Arts Rev 7:37–42
    15.Casper GD, Hartman VL, Mullins LL (1996) Results of a clinical trial of the holmium: YAG laser in disc decompression utilizing the side-firing fiber: a two-year follow-up. Lasers Surg Med 19(1):90–6CrossRef PubMed
    16.Jayasree RS, Gupta AK, Bodhey NK, Mohanty M (2009) Effect of 980-nm Diode laser and 1064-nm Nd: YAG laser on the intervertebral disc in vitro and in vivo studies. Photomed Laser Surg 27(4):547–52CrossRef PubMed
    17.Gevargez A, Groenemeyer D, Czerwinsky F (2000) CT-guided percutaneous laser disc decompression with Ceralas D, the diode laser with 980-nm wavelength and 200-μm fiber optics. Eur Radiol 10:1239CrossRef PubMed
    18.Iwatsuki K, Yoshimine, TI, Awazu, K (2007) Percutaneous laser disc decompression for lumbar disc hernia: indications based on Lasegue’s Sign. Photomed Laser Surg 25 (40).
    19.Iwatsuki K, Yoshimine TI, Umegaki M, Yoshimura K, Ohnishi Y, Ishihara M, Moriwaki T (2011) Percutaneous diode laser irradiation for lumbar discogenic pain: a clinical study. Photomed Laser Surg 29(7):459–63CrossRef PubMed
    20.Zhao XL, Fu ZJ, Xu YG, Zhao XJ, Song WG, Zheng H (2012) Treatment of lumbar intervertebral disc herniation using C-Arm fluoroscopy guided percutaneous laser disc decopmpression. Photomed Laser Surg 30(2):92–5CrossRef PubMed PubMedCentral
    21.Adam D, Pevzner, Gepstein A (2013) Comparison of percutaneous nucleoplasty and open discectomy in patients with lumbar disc protrusions. Chirurgia (Bucur) 108(1):94–8
    22.Fukuda TY, Tanji MM, Sb SR, Sato MN, Plapler H (2013) Low-level infrared diode laser on inflammatory process modulation in mice: pro-and anti-inflammatory cytokines. Lasers med sci 28(5):1305–13. doi:10.​1007/​s10103-012-1231-z CrossRef PubMed
    23.Kasch R, Mensel B, Florian S, Ruetten S, Barz T, Froehlich S et al (2012) Percutaneous nucleoplasty volume reduction with disc in an animal model. PLoS ONE [Internet] 7(11):e50211CrossRef
    24.Kasch R, Mensel B, Schmidt F, Drescher W, Pfuhl R, Ruetten S et al (2012) Percutaneous disc decompression with nucleoplasty-volumetry of the nucleus pulposus using ultrahigh-field MRI. PLoS ONE [Internet] 7(7):e41497CrossRef
    25.Ren L, Guo B, Zhang T, Bai Q, Wang X-h, Zhang L et al (2013) Medium-term follow-up findings in imaging after percutaneous laser disc decompression manifestation. Photomed Laser Surg 31(6):247–51CrossRef PubMed
    26.Choy D, Diwan S (1992) In vitro and in vivo fall of intradiscal pressure with laser disc decompression. J Clin Laser Med Surg 10:435–7PubMed
    27.Min K, Read H, Parties K (1996) Quantitative determination of radiofrequency ablation in weight of lumbar intervertebral discs with holmium: YAG laser. Lasers Surg Med 18:187–90CrossRef PubMed
    28.Manni J (1992) Surgical diode lasers. J Clin Laser Med Surg 10(5):377–80PubMed
    29.Cselik Z, Aradi M, von Jako RA, Lelovics Z, Juhasz I, Egyhazi Z et al (2012) Impact of infrared laser light at different wavelengths-induced ablation on intervertebral disc bovine ex vivo: evaluation with magnetic resonance imaging and histology. Lasers Surg Med 44:406–12CrossRef PubMed
    30.Choy D, Altman P, Trokel S (1995) Efficiency of disc radiofrequency ablation with lasers of various wavelengths. J Clin Laser Med Surg 13(3):153–6PubMed
    31.Goldman MP, Fitzpatrick RE (1994) Cutaneous laser surgery: the art and science of selective photothermolysis, 1st edn. Mosby, San Diego, 336 p
    32.Niemz M (2007) Thermal interaction. Laser-tissue interactions: Fundamentals and applications, 3rd edn. Springer, Berlin, p 79CrossRef
    33.Jacques N (1998) Continuous laser ablation of carbonized tissue: simple rules Oregon Medical Laser Center [cited 2013 10/20/2013]. Available from: http://​omlc.​ogi.​edu/​news/​may98/​ablation/​index.​html
  • 作者单位:Hélio Plapler (1) (3)
    Marília W. Mancini (2)
    Valéria R. G. Sella (1)
    Fernando R. C. Bomfim (1)

    1. Department of Surgery, Federal University of São Paulo, São Paulo, Brazil, 04023-900
    3. Rua Tomas Carvalhal, 884 apt. 51, 04006-003, São Paulo, SP, Brazil
    2. DMC, Ltd, São Carlos, São Paulo, Brazil, 13562-030
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Medicine/Public Health, general
    Dentistry
    Laser Technology and Physics and Photonics
    Quantum Optics, Quantum Electronics and Nonlinear Optics
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer London
  • ISSN:1435-604X
文摘
Laser discectomy or nucleotomy is an increasingly important method for less invasive procedures of column, but the ideal kind of laser is still not established. As the wavelength is an important parameter for water absorption, this study was performed to investigate the action of the laser emission in the near infrared (808 to 1908 nm) region in the context of surgical procedures for percutaneous intervertebral disc decompression (nucleotomy). Forty intervertebral discs from pigs lumbar spines were irradiated with laser (λ = 808, 980, 1470 and 1908 nm), 1-s on/off time cycles, for 120 cycles and 10 W of power (808, 980, and 1470 nm) or 240 cycles and 5 W of power (1908 nm), with total power of 1200 J, and subjected to microscopic evaluation through hematoxylin-eosin (HE) staining in order to measure the ablation lesions and the residual thermal injury. Ten other discs were not irradiated and worked as controls. The ablation lesions were measured (in mm) at 1.08 ± 1.25, 1.70 ± 0.63, 2.23 ± 1.02, 1.37 ± 0.39, and 0.94 ± 0.41 (median ± SD) for the control, 808, 980, 1470, and 1908 nm groups, respectively. The difference between 1908 nm and all the other groups was statistically significant (p < 0.05). The residual thermal injury was less evident in 1908 nm laser and sharper in 980 nm laser wavelengths. The laser at a wavelength of 1908 nm was considered the most efficient for the vaporization of the nucleus pulposus, followed by the laser wavelengths of 1470, 808, and 980 nm, and proved to be useful for laser nucleotomy procedure.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.