The POM-DOM piezophilic microorganism continuum (PDPMC)—The role of piezophilic microorganisms in the global ocean carbon cycle
详细信息    查看全文
  • 作者:JiaSong Fang ; Li Zhang ; JiangTao Li ; Chiaki Kato
  • 关键词:carbon cycle ; deep ocean ; DOM ; PDPMC ; piezophilic microorganisms ; POM
  • 刊名:Science China Earth Sciences
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:58
  • 期:1
  • 页码:106-115
  • 全文大小:713 KB
  • 参考文献:1. Alain K, Marteinsson V T, Miroshnichenko M L, et al. 2002. / Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol, 52: 1331-339
    2. Alazard D, Dukan S, Urios A, et al. 2003. / Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol, 53: 173-78
    3. Alldredge A, Gottschalk C C. 1990. The relative contribution of marine snow of different origins to biological processes in coastal waters. Cont Shelf Res, 10: 41-8
    4. Alldredge A L. 2000. Interstitial dissolved organic carbon (DOC) concentrations within sinking marine aggregates and their potential contribution to carbon flux. Limnol Oceanogr, 45: 1245-253
    5. Amstalden van Hove E R, Smith D F, Heeren R M A. 2010. A concise review of mass spectrometry imaging. J Chromatogr A, 1217: 3946-954
    6. Anderson T R, Williams P J le B. 1999. A one-dimensional model of dissolved organic carbon cycling in the water column incorporating combined biological-photochemical decomposition. Glob Biogeochem Cycle, 13: 337-49
    7. Arístegui J, Gasol J M, Duarte C M, et al. 2009. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr, 54: 1501-529
    8. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev MarSci, 3: 401-25
    9. Azam F, Ammerman J W. 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems, microenvironmental considerations. In: Fasham M J R, ed. Flows of Energy and Materials in Marine Ecosystems. New York: Plenum Press. 345-60
    10. Azam F, Fenchel T, Field J G, et al. 1983. The ecologicalrole of water-column microbes in the sea. Mar Ecol-Prog Ser, 10: 257-63
    11. Azam F, Long R A. 2001. Atmospheric CO2 changes. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union. 99-10
    12. Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat Rev Microbiol, 5: 782-91
    13. Azam F. 1998. Microbial control of oceanic carbon flux: The plot thickens. Science, 280: 694-96
    14. Bale S J, Goodman K, Rochelle P A, et al. 1997. / Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol, 47: 515-21
    15. Bartlett D H. 2008. Introduction to deep-sea microbiology. In: Michiels C, Bartlett D H, Aertsen A, eds. High-Pressure Microbiology. Washington DC: American Society for Microbiology. 195-02
    16. Beaupre S, Druffel E. 2009. Constraining the propagation of bomb-radiocarbon through dissolved organic carbon pool in the northeast Pacific Ocean. Deep-Sea Res I, 56: 1717-726
    17. Benner R. 2002. Chemical composition and reactivity. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 59-0
    18. Bianchi A, Van Wambeke F, Garcin J. 1998. Bacterial utilization of glucose in the water column from etrophic to oligotrophicpelaglc areas in the eastern North Atlantic Ocean. J Mar Syst, 14: 45-5
    19. Boxer S G, Kraft M L, Weber P K. 2009. Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys, 38: 53-4
    20. Brown M V, Philip G K, Bunge J A, et al. 2009. Microbial community structure in the North Pacific Ocean. ISME J, 3: 1374-386.
    21. Carlson C A, Ducklow H W, Michaels A F. 1994. Annualflux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371: 405-08
    22. Caron D A, Dam H G, Kremer P. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea and near Bermuda. Deep-Sea Res Part I-Oceanogr Res Pap, 42: 943-72
    23. Chrost R J. 1991. Environmental control of synthesis and activity of aquatic microbial ectoenzymes. In: Chrost R J, ed. Microbial Enzymes in Aquatic Environments. New York: Springer-Verlag. 29-9
    24. D’Andrilli J, Dittmar T, Koch B P, et al. 2010. Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. Rapid Commun Mass Spec, 24: 643-50
    25. del Giorgio P A, Prairie Y T, Bird D F. 1997. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, counted using CTC reduction and flow cytometry. Microb Ecol, 34: 144-54
    26. DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci U S A, 89: 5685-689
    27. DeLong E F, Franks D G, Yayanos A A. 1997. Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Envi
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
The deep ocean piezosphere accounts for a significant part of the global ocean, hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle. The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean. However, there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production, transformation, degradation, and export of marine dissolved and particulate organic matter (DOM and POM) in the deep ocean and the ecological consequence. Here we propose the POM-DOM piezophilic microorganism continuum (PDPMC) conceptual model, to address these important biogeochemical processes in the deep ocean. We propose that piezophilic microorganisms (bacteria and archaea) play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes, enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter, and serve as the primary driver for carbon cycle in the deep ocean.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.