Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater
详细信息    查看全文
文摘
Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8-2 h in the UAF reactor and 2-8 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l? to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h and the influent NB concentration increased from 400 to 800 mg l?, respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide an effective yet low cost method for treatment of NB-containing industrial wastewater.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.