Catalytic application of metallic iron from the dyeing sludge ash for benzene steam reforming reaction in tar emitted from biomass gasification
详细信息    查看全文
  • 作者:Sung-Bang Nam ; Yeong-Su Park ; Yong-Sik Yun…
  • 关键词:Biomass Gasification ; Steam Reforming ; Catalytic Tar Reduction ; Iron Oxide Catalyst ; Benzene
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:465-472
  • 全文大小:313 KB
  • 参考文献:1.L. Devi, K. J. Ptasinski, F. J. J. G. Janssen, S.V.B. van Paasen, P. C.A. Bergman and J.H. A. Kiel, Ren. Eng., 30, 565 (2005).CrossRef
    2.P. Mckendry, Bio. Technol., 83, 55 (2002).CrossRef
    3.U.W. E. A. Schneider and B. A. McCarl, Environ. Resour. Econ., 24, 291 (2003).CrossRef
    4.J. Han and H. Kim, Renew. Sustainable Energy Rev., 12, 397 (2008).CrossRef
    5.H. Noichi, A. Uddin and E. Sasaoka, Fuel Process Technol., 91, 1609 (2010).CrossRef
    6.R. Coll, J. Salvado, X. Farriol and D. Montane, Fuel Process Technol., 74, 19 (2001).CrossRef
    7.L. Xu, J. Liu, Q. Wang, S. Liu, W. Xin and Y. Xu, Appl. Catal., 258, 47 (2004).CrossRef
    8.M. Nagao and Y. Suda, Langmuir, 5, 42 (1989).CrossRef
    9.T.A. Milne, R. J. Evans and N. Abatzoglou, Technical Report; NREL: USA, NREL/TP-570-25357, November (1998).
    10.D. Swierczynski, S. Libs, C. Courson and A. Kiennemann, Appl. Catal. B: Environ., 74, 211 (2007).CrossRef
    11.R. Zhang, Y. Wang and R.C. Brown, Eng. Conv. Manage., 48, 68 (2007).CrossRef
    12.K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J.L.G. Fierro and A.M. Efstathiou, J. Catal., 241, 132 (2006).CrossRef
    13.M. A. Edwards, D. M. Whittle, C. Rhodes, A. M. Ward, D. Rohan, M.D. Shannon, G. J. Hutchings and C. J. Kiely, Phys. Chem. Chem. Phys., 4, 3902 (2002).CrossRef
    14.P. Kumar and R. Idem, Eng. Fuels, 21, 522 (2007).CrossRef
    15.M.D. A. Uddin, H. Tsuda, S. Wu and E. Sasaoka, Fuel, 87, 451 (2008).CrossRef
    16.D. Ross. R. Noda, M. Horio, A. Kosminski, P. Ashman and P. Mullinger, Fuel, 86, 1417 (2007).CrossRef
    17.T. Nordgreen, T. Liliedahl and K. Sjöström, Fuel, 85, 689 (2006).CrossRef
    18.K. Tomishige, T. Miyazawa, M. Asadullah, S. Ito and K. Kunimori, Green. Chem., 5, 399 (2003).CrossRef
    19.K. Tomishige, M. Asadullah and K. Kunimori, Catal. Today, 89, 389 (2004).CrossRef
    20.D. Sutton, B. Kelleher and J.R. H. Ross, Fuel Process Technol., 13, 155 (2001).CrossRef
    21.Y. S. Park, Ph.D. Dissertation, Tokyo Institute of Technology, Tokyo, Japan (2012).
    22.N. Gao, A. Li, C. Quan and F. Gao, Int. J. Hydrogen. Energy, 33, 5430 (2008).CrossRef
    23.L. Ma, B. Gong, T. Tran and M. S. Wainwright, Catal. Today, 63, 499 (2000).CrossRef
    24.K.K. Pant, R. Jain and S. Jain, Korean J. Chem. Eng., 28, 1859 (2011).CrossRef
    25.P. Kuchonthara, B. Puttasawat, P. Piumsomboon, L. Mekasut and T. Vitidsant, Korean J. Chem. Eng., 29, 1525 (2012).CrossRef
    26.M. B. Talawar, T.M. Jyothi, P.D. Sawant, T. Raja and B. S. Raw, Green. Chem., 2, 266 (2000).CrossRef
    27.X. A. Garcia and K. J. Hüttinger, Erdöl Kohle Erdgas Petrochem., 43, 273 (1990).
    28.C. H. Bartholomew, Appl. Catal. A: Gen., 212, 17 (2001).CrossRef
    29.E. G. Baker, L. K. Mudge and M.D. Brown, Ind. Eng. Chem. Res., 26, 1335 (1987).CrossRef
    30.G. H. Lee, J. G. Park, Y. M. Sung, K.Y. Chung, W. I. Cho and D.W. Kim, Nanotechnol., 20, 295205 (2009).CrossRef
    31.G. Munteanu, L. Ilieva and D. Andreeva, Thermochimica Acta, 291, 171 (1997).CrossRef
    32.K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J. L. G. Fierro and A. M. Efstathiou, J. Catal., 241, 132 (2006).CrossRef
  • 作者单位:Sung-Bang Nam (1)
    Yeong-Su Park (1)
    Yong-Sik Yun (1)
    Jae-Hoi Gu (1)
    Ho-Jin Sung (1)
    Masayuki Horio (2)

    1. Plant Engineering Center, Institute for Advanced Engineering, 633-2, Goan, Baegam, Cheoin, Yongin, Kyeonggi, Seoul, 449-863, Korea
    2. Department of Chemical Engineering, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 24-16, Naka-cho 2, Koganei-shi, Tokyo, 184-8588, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
Because it is the most promising method for reforming tar in a gasification system, a catalytic steam reforming reaction of tar using a dyeing sludge ash catalyst that contains mostly iron oxide has been modeled using benzene to investigate whether a steam reforming catalyst produced from waste is viable. The catalytic activity of the ash catalyst is similar to that of the commercially available iron-chrome-based catalyst for the same equivalent total amount of Fe2O3. The activity over the ash catalyst has been examined in terms of the weight hour space velocity (WHSV) and the reaction temperature to develop a model for the reaction kinetics. Using a power law model, the reaction order coefficients of the benzene and steam were estimated to be 0.43 and 0, respectively. The activation energy required for the ash catalyst was approximately 187.6 kJ mol−1. In addition, the reductive properties of the iron oxide in the ash catalyst were also examined via XRD and H2-TPR analyses. Keywords Biomass Gasification Steam Reforming Catalytic Tar Reduction Iron Oxide Catalyst Benzene
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.