Synthesis and characterization of nanostructured iron compounds prepared from the decomposition of iron pentacarbonyl dispersed into carbon materials with varying porosities
详细信息    查看全文
  • 作者:Miguel A. Schettino Jr. ; Alfredo G. Cunha…
  • 关键词:Iron oxides ; Porous carbon ; Iron pentacarbonyl ; Mössbauer spectroscopy ; X ; ray diffraction ; α ; Fe ; ZFC/FC. ; Nanocomposites
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:4
  • 全文大小:1,328 KB
  • 参考文献:Alexandrescu R, Morjan I, Tomescu A, Simion CE, Scarisoreanu M, Birjega R, Fleaca C, Gavrila L, Soare I, Dumitrache F et al (2010) Direct production of a novel iron-based nanocomposite from the laser pyrolysis of Fe(CO)5/MMA mixtures: structural and sensing properties. J Nanomater 2010:1CrossRef
    Allia P, Barrera G, Bonelli B, Freyria FS, Tiberto P (2013) Magnetic properties of pure and eu-doped hematite nanoparticles. J Nanoparticle Res 15(12):1–12
    Antisari MV, Montone A, Jovic N, Piscopiello E, Alvani C, Pilloni L (2006) Low energy pure shear milling: a method for the preparation of graphite nano-sheets. Scripta Mater 55(11):1047–1050CrossRef
    Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42(1):013001CrossRef
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39CrossRef
    Cheng X, Wu B, Yang Y, Li Y (2011) Synthesis of iron nanoparticles in water-in-oil microemulsions for liquid-phase fischer-tropsch synthesis in polyethylene glycol. Catal Commun 12(6):431–435CrossRef
    Cunha AG, Freitas JCC, Cipriano DF, Emmerich FG (2012) Solid-state NMR study of carbon blacks obtained by plasma pyrolysis of natural gas extended abstract. In CARBON 2012—The annual world conference on carbon, Krakow, Poland, ID 813
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–818CrossRef
    Donnet JB (1993) Carbon black: science and technology. CRC Press, Boca Raton
    Galembeck F, Santos ÁCM, Schumacher HC, Rippel MM, Rosseto R (2007) Chemical industry: recent developments, problems and opportunities. Quim Nova 30(6):1413–1419CrossRef
    Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1(1):1–19CrossRef
    Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltda, LondonCrossRef
    Guimarães AP (1998) Magnetism and magnetic resonance in solids. Wiley, New York
    Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45(13):4047–4055CrossRef
    Hosny NM (2014) Single crystalline Co3O4: synthesis and optical properties. Mater Chem Phys 144(3):247–251CrossRef
    Hosny NM, Al-Hussaini AS, Nowesser N, Zoromba MS (2015) Polyanthranilic acid. J Therm Anal Calorimet, 1–7
    Hosny NM, Nowesser N, Al-Hussaini A, Zoromba MS (2016a) Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles. J Mol Struct 1106:479–484CrossRef
    Hosny NM, Nowesser N, Al Hussaini A, Zoromba S (2016b) Solid state synthesis of hematite nanoparticles from doped poly o-aminophenol (POAP). J Inorg Organomet Polym Mater 26(1):41–47CrossRef
    Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501CrossRef
    Jäger C, Mutschke H, Huisken F, Alexandrescu R, Morjan I, Dumitrache F, Barjega R, Soare I, David B, Schneeweiss O (2006) Iron-carbon nanoparticles prepared by CO2 laser pyrolysis of toluene and iron pentacarbonyl. Appl Phys A 85(1):53–62CrossRef
    Jullok N, Van Hooghten R, Luis P, Volodin A, Van Haesendonck C, Vermant J, Van der Bruggen B (2016) Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: Plant-inspired dewatering systems. J Clean Prod 112:4879–4889CrossRef
    Karr C (1978) Analytical methods for coal and coal products, vol 2. Academic Press, San Francisco
    Kharisov BI, Dias HR, Kharissova OV, Jiménez-Pérez VM, Perez BO, Flores BM (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advan 2(25):9325–9358CrossRef
    Klabunde KJ, Richards RM (2009) Nanoscale materials in chemistry. Wiley, ChichesterCrossRef
    Knieke C, Berger A, Voigt M, Taylor RNK, Röhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204CrossRef
    Koch CC (2006) Nanostructured materials: processing, properties and applications. William Andrew, New York
    Lai Y, Rutigliano MN, Veser G (2015) Controlled embedding of metal oxide nanoparticles in ZSM-5 zeolites through preencapsulation and timed release. Langmuir 31(38):10562–10572CrossRef
    Lu A-H, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRef
    Luo L, Dai C, Zhang A, Wang J, Liu M, Song C, Guo X (2015) Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Adv 5(37):29509–29512CrossRef
    Marsh H, Reinoso FR (2006) Activated carbon. Elsevier, Amsterdam
    Minchev C, Huwe H, Tsoncheva T, Paneva D, Dimitrov M, Mitov I, Fröba M (2005) Iron oxide modified mesoporous carbons: physicochemical and catalytic study. Microporous Mesoporous Mater 81(1):333–341CrossRef
    Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2(8):127--146
    Moussa S, Atkinson G, El-Shall MS (2013) Laser-assisted synthesis of magnetic Fe/Fe2O3 core: carbon-shell nanoparticles in organic solvents. J Nanoparticle Res 15(3):1–10CrossRef
    Oliveira DQL, Oliveira LCA, Murad E, Fabris JD, Silva AC, de Menezes LM (2010) Niobian iron oxides as heterogeneous fenton catalysts for environmental remediation. Hyperfine Interact 195(13):27–34CrossRef
    Orolínová Z, Mockovčiaková A (2009) Structural study of bentonite/iron oxide composites. Mater Chem Phys 114(2):956–961CrossRef
    Papusoi C Jr (1999) The particle interaction effects in the field-cooled and zero-field-cooled magnetization processes. J Magn Magn Mater 195(3):708–732CrossRef
    Pérez-Cabero M, Taboada JB, Guerrero-Ruiz A, Overweg AR, Rodríguez-Ramos I (2006) The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: a 57Fe Mössbauer spectroscopy study. Phys Chem Chem Phys 8(10):1230–1235CrossRef
    Prené P, Tronc E, Jolivet J-P, Livage J, Cherkaoui R, Nogues M, Dormann J-L, Fiorani D (1993) Magnetic properties of isolated γ-Fe2O3 particles. Magn IEEE Trans 29(6):2658–2660CrossRef
    Ragheb RR, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione JM, Fahmy TM (2013) Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn Reson Med 70(6):1748–1760CrossRef
    Ramsden J (2009) Applied nanotechnology. William Andrew, Norwich
    Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21(14):1411–1420CrossRef
    Sano N, Akazawa H, Kikuchi T, Kanki T (2003) Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11):2159–2162CrossRef
    Schettino MA Jr, Freitas JCC, Morigaki MK, Nunes E, Cunha AG, Passamani EC, Emmerich FG (2010) High-temperature xrd study of thermally induced structural and chemical changes in iron oxide nanoparticles embedded in porous carbons. J Nanoparticle Res 12(8):3097–3103CrossRef
    Schettino MA Jr, Gonçalves GR, Morigaki MK, Nunes E, Cunha AG, Passamani EC, Emmerich FG, Nascente PAP, Freitas JCC (2012) Synthesis, characterization and study of thermal behavior of nanostructured iron oxides embedded in porous carbon prepared from the decomposition of iron pentacarbonyl. In Martinez AI (ed) Iron oxides: structure, properties and applications, Nova Publishers, New York, pp 19–51
    Schnepp Z, Wimbush SC, Antonietti M, Giordano C (2010) Synthesis of highly magnetic iron carbide nanoparticles via a biopolymer route. Chem Mater 22(18):5340–5344CrossRef
    Snovski R, Grinblat J, Margel S (2012) Novel magnetic fe onion-like fullerene micrometer-sized particles of narrow size distribution. J Magn Magn Mater 324(1):90–94CrossRef
    Snovski R, Grinblat J, Sougrati MT, Jumas JC, Margel S (2014) Synthesis and characterization of iron, iron oxide and iron carbide nanostructures. J Magn Magn Mater 349:35–44CrossRef
    Steyn WJ (2009) Potential applications of nanotechnology in pavement engineering. J Transp Eng 135(10):764–772CrossRef
    Sun XC, Nava N (2002) Microstructure and magnetic properties of Fe(C) and Fe(O) nanoparticles. Nano Lett 2(7):765–769CrossRef
    Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72(18):184428CrossRef
    Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170CrossRef
    Wu W, He Q, Jiang C et al. (2009) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. ChemInform 40(24):i
    Yu RH, Zhang XX, Tejada J, Knobel M, Tiberto P, Allia P (1995) Magnetic properties and giant magnetoresistance in melt-spun Co–Cu alloys. J Appl Phys 78(1):392–397CrossRef
    Zysler RD, Fiorani D, Testa AM (2001) Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J Magn Magn Mater 224(1):5–11CrossRef
  • 作者单位:Miguel A. Schettino Jr. (1)
    Alfredo G. Cunha (1)
    Evaristo Nunes (1)
    Edson C. Passamani (1)
    Jair C. C. Freitas (1)
    Francisco G. Emmerich (1)
    Milton K. Morigaki (2)

    1. Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
    2. Departamento de Química, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
This work describes the production and characterization of carbon-iron nanocomposites obtained from the decomposition of iron pentacarbonyl (Fe(CO)5) mixed with different carbon materials: a high surface area activated carbon (AC), powdered graphite (G), milled graphite (MG), and carbon black (CB). The nanocomposites were prepared either under argon or in ambient atmosphere, with a fixed ratio of Fe(CO)5 (4.0 mL) to carbon precursor (2.0 g). The images of scanning electron microscopy and the analysis of textural properties indicated the presence of nanostructured Fe compounds homogeneously dispersed into the different classes of pores of the carbon matrices. The elemental Fe content was always larger for samples prepared in ambient atmosphere, reaching values in the range of 20–32 wt%. On the other hand, samples prepared under argon showed reduced Fe content, with values in the range 5–10 wt% for samples prepared from precursors with low surface area (G, MG, and CB) and a much higher value (~19 wt%) for samples prepared from the precursor of high surface area (AC). Mössbauer spectroscopy and X-ray diffractometry showed that the nanoparticles were mostly composed of iron oxides in the case of the samples prepared in oxygen-rich ambient atmosphere and also for the AC-derived nanocomposite prepared under argon, which is consistent with the large oxygen content of this precursor. For the other precursors, with reduced or no oxygen content, metallic iron and iron carbides were found to be the dominant phases in samples prepared under oxygen-free atmosphere. The samples prepared in ambient atmosphere and the AC-derived sample prepared under argon exhibited superparamagnetic behavior at room temperature, as revealed by temperature-dependent magnetization curves and Mössbauer spectroscopy.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.