Increased Availability of Tryptophan in 5-Methyltryptophan-Tolerant Shoots of Catharanthus roseus and Their Postharvest in vivo Elicitation Induces Enhanced Vindoline Production
详细信息    查看全文
  • 作者:Priyanka Verma (1)
    Ajay K. Mathur (1) akmcathp@gmail.com
    Karuna Shanker (2)
  • 关键词:Catharanthus roseus – ; TIAs – ; Feedback inhibition – ; 5 ; Methyl tryptophan – ; Postharvest elicitation
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:168
  • 期:3
  • 页码:568-579
  • 全文大小:388.7 KB
  • 参考文献:1. van der Heijden, R., Jacobs, D. I., Snoeijer, W., Hallard, D., & Verpoorte, R. (2004). Current Medicinal Chemistry, 11, 607–628.
    2. Verma, P., Mathur, A. K., Srivastava, A., & Mathur, A. (2011). Protoplasma, 249, 255–268.
    3. Facchini, P. J., & De Luca, V. (2008). The Plant Journal, 54, 763–784.
    4. Zhao, J., & Verpoorte, R. (2007). Phytochemistry Reviews, 6, 435–457.
    5. Murata, J., Roepke, J., Gordon, H., & De Luca, V. (2008). The Plant Cell, 20, 524–542.
    6. Guirimand, G., Guihur, A., Pierre, P., Hericourt, F., et al. (2011). Journal of Plant Physiology, 168, 519–628.
    7. O’Keef, B. R., Mahady, G. B., Gills, J. J., & Beecher, C. W. W. (1997). Journal of Natural Products, 60, 261–264.
    8. Hern谩ndez-Dom铆nguez, E., Campos-Tamayo, F., & V谩zquez-Flota, F. (2004). Biotechnology Letters, 26, 671–674.
    9. Campos-Tamayo, F., Hernandez-Dom铆nguez, E., & Vazquez-Flota, F. (2008). Annals of Botany, 102, 409–415.
    10. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Plant Cell, Tissue and Organ Culture, 69, 85–93.
    11. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Journal of Biotechnology, 96, 193–203.
    12. Goddijn, O. J. M., Pennings, E. J. M., Vander Helm, P., Schilperoort, R. A., et al. (1995). Transgenic Research, 4, 315–323.
    13. Canel, C., Lopes-Cardoso, M. I., Whitmer, S., Van der Fits, L., et al. (1998). Planta, 205, 414–419.
    14. Seth, R., & Mathur, A. K. (2005). Current Science, 89, 554–557.
    15. Radwanski, E. R., & Last, R. L. (1995). The Plant Cell, 7, 921–934.
    16. Li, J., & Last, R. L. (1996). Plant Physiology, 110, 51–59.
    17. Verma, P., Mathur, A. K., Massod, N., Luqman, S., & Shankar, K. (2012). Protoplasma. doi:10.1007/s00709-012-0423-5.
    18. Cho, H. J., Brotherton, J. E., Song, H. S., & Widhlm, J. M. (2000). Plant Physiology, 123, 1069–1076.
    19. Tozawa, Y., Hasegawa, H., Terakawa, T., & Wasaka, K. (2001). Plant Physiology, 126, 1493–1506.
    20. Hughes, E. H., Hong, S. B., Gibson, S. I., Shanks, J. V., & San, K. Y. (2004). Biotechnology and Bioengineering, 86, 718–727.
    21. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.
    22. Dalby, A., & Tsai, C. Y. (1975). Analytical Biochemistry, 63, 283–285.
    23. Hernandez-Dominguez, E., & Flota, F. V. (2006). Journal of Liquid Chromatography & Related Technologies, 29, 583–590.
    24. Gupta, M. M., Singh, D. V., Tripathi, A. K., Pandey, R., Verma, et al. (2005). Journal of Chromatographic Science, 43, 450–453.
    25. Ikeda, M. (2006). Applied Microbiology and Biotechnology, 69, 615–626.
    26. Ishihara, A., Matsuda, F., Miyagawa, H., & Wakas, K. (2007). Metabolomics, 3, 319–334.
    27. Verma, P., Mathur, A. K., & Shankar, K. (2012). Plant Cell, Tissue and Organ Culture. doi:10.1007/s11240-012-0185-y.
    28. Islas, I., Loyola-Vargas, V. M., & Miranda-Ham, M. L. (1994). In Vitro Cellular and Developmental Biology—Plant, 30, 81–83.
    29. Whitmer, S., Canel, C., Hallard, D., Goncalves, C., & Verpoorte, R. (1998). Plant Physiology, 116, 853–857.
    30. Morgan, J. A., & Shanks, J. V. (2000). Journal of Biotechnology, 79, 137–145.
    31. Taha, H. S., El-Bahr, M. K., & Seif-El-Nasr, M. M. (2009). Australian Journal of Basic and Applied Sciences, 3, 3137–3144.
    32. Widholm, J. M. (1977). Crop Science, 17, 597–600.
    33. Kim, D. S., Lee, I. S., Jang, C. S., Hyun, D. Y., Seo, Y. W., & Lee, Y. I. (2004). Euphytica, 135, 9–19.
    34. Kim, D. S., Jang, C. S., Kim, J. B., Lee, G. J., Kang, S. Y., Kim, W., & Seo, Y. W. (2009). Biologia Plantarum, 53, 444–450.
    35. Galili, G., & Hofgen, R. (2002). Metal Engineering, 4, 3–11.
    36. De Luca, V., & St-Pierre, B. (2000). Trends in Plant Science, 5, 168–173.
    37. Bohlmann, J., De Luca, Y., Eilert, U., & Martin, W. (1995). The Plant Journal, 7, 491–501.
    38. Peebles, C. A. M., Hong, S. B., Gibson, S. I., Shanks, J. V., & San, K. Y. (2006). Biotechnology and Bioengineering, 93, 534–540.
    39. Tanko, H., Carrier, D. J., Duan, L., & Clausen, E. (2005). Plant Genetic Resources, 3, 304–313.
    40. Khosroshahi, M. R. Z., Ashari, M. E., & Ershadi, A. (2007). Scientia Horticulturae, 114, 27–32.
  • 作者单位:1. Department of Plant Biotechnology, Council of Scientific and Industrial Research鈥揅entral Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015 India2. Analytical Chemistry Division, Council of Scientific and Industrial Research鈥揅entral Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), PO CIMAP, Lucknow, 226015 India
  • ISSN:1559-0291
文摘
Ten 5-methyltryprophan (5-MT)-resistant multiple shoot culture lines in three genotypes of Catharanthus roseus were selected in vitro. The variant shoot lines displayed a differential threshold tolerance limit against the analogue stress, ranged from 20 to 70 mg/l 5-MT in the medium. The lines tolerant to 40 mg/l 5-MT stress were most stable and fast proliferating. All the selected lines in the presence of 5-MT stress recorded increased level of tryptophan in their free amino acid pool. Highest tryptophan accumulation occurred in lines P40, P30, D40, and N40 (i.e., 296.5, 241.0, 200.6, and 202.0 μg/g dry wt., respectively). A concomitant increase in the total alkaloid content (2.3–3.8 % dry wt.) under the analogue stress was also noticed in these lines when compared to 1.0–1.58 % dry wt. in the respective wild-type shoot maintained on a stress-free medium. The HPLC analysis of the alkaloid extracts of the 5-MT-tolerant lines grown under analogue stress also revealed vindoline as a major constituent with maximum accumulation in lines N40, N30, D30, D40, and P40 (0.046, 0.032, 0.034, and 0.022 % dry wt., respectively). The rooted shoots of 5-MT-tolerant lines were successfully acclimatized under glasshouse environment wherein they grew normally and set seeds. Flowering twigs or leaves excised from 1-year-old glasshouse-grown plants of 5-MT variant lines upon postharvest in vivo elicitation with 30 mg/l 5-MT or 5.0 mg/l tryptophan registered an eight-to-tenfold increment in their vindoline content within 24–48 h.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.