Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells
详细信息    查看全文
  • 作者:MiaoYing Yu (1) (2)
    Song Lian (1) (2)
    HongBing Han (2)
    Kun Yu (1) (2)
    GuiGuan Li (2)
    ZhengXing Lian (1) (2)
    Ning Li (1)
  • 关键词:recombinant pluripotency factors ; protein transduction domain ; chicken ESC ; pluripotency
  • 刊名:Science China Life Sciences
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:56
  • 期:1
  • 页码:40-50
  • 全文大小:1695KB
  • 参考文献:1. Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154鈥?56 CrossRef
    2. Martin G. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78: 7634鈥?638 CrossRef
    3. Petitte J N, Liu G, Yang Z. Avian pluripotent stem cells. Mech Devel, 2004, 121: 1159鈥?168 CrossRef
    4. Li J, PAN Q, Li J, et al. Research of blastocyte鈥攍ike structure in chicken. Sci China Ser C-Life Sci, 2005, 48: 481鈥?86 CrossRef
    5. Speksnijder G, Ivarie R. A modified method of shell windowing for producing somatic or germline chimeras in fertilized chicken eggs. Poult Sci, 2000, 79: 1430鈥?433
    6. Horiuchi H, Tategaki A, Yamashita Y, et al. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. J Biol Chem, 2004, 279: 24514鈥?4520 CrossRef
    7. Nichols J, Evans E P, Smith A G. Establishment of germ-line competent embryonic stem (ES) cells using differentiation inhib-iting activity. Development, 1990, 110: 1341鈥?3484
    8. Pain B, Clark M E, Shen H, et al. Long-term / in vitro culture and characterisation of avian embryonic stem cells with multiple morphorgenetic potentialities. Development, 1996, 122: 2339鈥?348
    9. Thomson J A, Itskovitz E J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145鈥?147 CrossRef
    10. Stadtfeld M, Hochedlinger K, Induced pluripotency: history, mechanisms, and applications. Genes Dev, 2010, 24: 2239鈥?263 CrossRef
    11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663鈥?76 CrossRef
    12. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861鈥?72 CrossRef
    13. Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009, 458: 771鈥?75. CrossRef
    14. Yu J, Hu K, Smuga O K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324: 797鈥?01 CrossRef
    15. Jia F, Wilson K D, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods, 2010, 7: 197鈥?99 CrossRef
    16. Wender P A, Mitchell D J, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci USA, 2000, 97: 13003鈥?3008 CrossRef
    17. Ziegler A, Nervi P, Durrenberger M, et al. HIV TAT variants differentially influence the production of glucocerebrosidase in Sf9 cells. Biochemistry, 2005, 44: 138鈥?48 CrossRef
    18. Michiue H, Tomizawa K, Wei F Y, et al. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J Biol Chem, 2005, 280: 8285鈥?289 CrossRef
    19. Lafevre-Bernt M, Wu S, and Lin X. Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther, 2008, 7: 1420鈥?429 CrossRef
    20. Dohoon K, Chun H K, Jung I M, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4: 472鈥?76 CrossRef
    21. Hongyan Z, Shili W, Jin Y J, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 8: 1鈥?
    22. Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J, 2009, 11: 13鈥?2 CrossRef
    23. Li J, Zhang B, Han H, et al. Metabolic properties of chicken embryonic stem cells. Sci China Life Sci, 2010, 53: 1073鈥?084 CrossRef
    24. Casanova E A, Shakhova O, Patel S S, et al. Pramel7 mediates LIF/STAT3-dependent self-renewal in embryonic stem cells. Stem Cells, 2011, 29: 474鈥?85 CrossRef
    25. Shin J E, Park S H, Jang Y K. Epigenetic up-regulation of leukemia inhibitory factor (LIF) gene during the progression to breast cancer. Mol Cells, 2011, 31: 181鈥?89 CrossRef
    26. Griffiths D S, Li J, Dawson M A. LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat Cell Biol, 2011, 13: 13鈥?1 CrossRef
    27. Eiselleova L, Matulka K, Kriz V, et al. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells, 2009, 27: 1847鈥?857 CrossRef
    28. Greber B, Lehrach H, Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells, 2007, 25: 455鈥?64 CrossRef
    29. Greber B, Wu G, Bernemann C. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 2010, 6: 215鈥?26 CrossRef
    30. Kim J, Chu J, Shen X, et al. An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 2008, 132: 1049鈥?061 CrossRef
    31. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133: 1106鈥?117 CrossRef
    32. Boyer L A, Lee T I, Cole M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122: 947鈥?56 CrossRef
    33. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007, 447: 425鈥?32 CrossRef
    34. Singhal N, Graumann J, Wu G, et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell, 2010, 141: 943鈥?55 CrossRef
    35. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol, 2010, 28: 1079鈥?088 CrossRef
    36. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 2006, 7: 540鈥?46 CrossRef
    37. Efroni S, Duttagupta R, Cheng J, et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2008, 2: 437鈥?47 CrossRef
    38. Wang Y, Erdmann N, Giannone R J, et al. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci USA, 2005, 102: 10256鈥?0260 CrossRef
    39. Blasco M A. The epigenetic regulation of mammalian telomeres. Nat Rev Genet, 2007, 8: 299鈥?09 CrossRef
    40. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev, 2010, 24: 2239鈥?263 CrossRef
    41. Marson A, Levine S S, Cole M F, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134: 521鈥?33 CrossRef
    42. Meshorer E, Yellajoshula D, George E, et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 2006, 10: 105鈥?16 CrossRef
    43. Spivakov M, Fisher A G. Epigenetic signatures of stem-cell identity. Nat Rev Genet, 2007, 8: 263鈥?71 CrossRef
    44. Hanna J H, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 2010, 143: 508鈥?25 CrossRef
    45. Niwa H, Toyooka Y, Shimosato D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell, 2005, 123: 917鈥?29 CrossRef
    46. Kuroda T, Tada M, Kubota H, et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol, 2005, 25: 2475鈥?485 CrossRef
    47. Rodda D J, Chew J L, Lim L H. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem, 2005, 280: 24731鈥?4737 CrossRef
    48. Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450: 1230鈥?234 CrossRef
    49. Heo I, Joo C, Cho J. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 2008, 32: 276鈥?84 CrossRef
    50. Loughlin F E, Gebert L F, Towbin H, et al. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol, 2011, 19: 84鈥?9 CrossRef
    51. Nam Y, Chen C, Gregory R I. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell, 2011, 174: 1080鈥?091 CrossRef
    52. Melton C, Judson R L, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 2010, 463: 621鈥?26 CrossRef
    53. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007, 447: 425鈥?32 CrossRef
    54. Hawkins R D, Hon G C, Yang C, et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res, 2011, 21: 1393鈥?409 CrossRef
    55. Klemke M, Meyer A, Hashemi N M, et al. Loss of let-7 binding sites resulting from truncations of the 3鈥?untranslated region of HMGA2 mRNA in uterine leiomyomas. Cancer Genet Cytogen, 2010, 196: 119鈥?23 CrossRef
    56. Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 2009, 462: 595鈥?01 CrossRef
    57. Li N, Zhong X, Lin X, et al. Lin-28 homologue A (LIN28A) promotes cell cycle progression via the regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem, 2010, 30: 1鈥?4
    58. Meshorer E, Yellajoshula D, George E, er al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 2006, 10: 105鈥?16 CrossRef
    59. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 2006, 7: 540鈥?46 CrossRef
    60. Golob J L, Paige S L, Muskheli V, et al. Chromatin remodeling during mouse and human embryonic stem cell differentiation. Devel Dynamics, 2008, 237: 1389鈥?398 CrossRef
    61. White J, Dalton S. Cell cycle control of embryonic stem cells. Stem Cell Rev, 2005, 1: 131鈥?38 CrossRef
  • 作者单位:MiaoYing Yu (1) (2)
    Song Lian (1) (2)
    HongBing Han (2)
    Kun Yu (1) (2)
    GuiGuan Li (2)
    ZhengXing Lian (1) (2)
    Ning Li (1)

    1. National Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, 100193, China
    2. Laboratory for Molecular and Cellular Genetics, Collage of Animal Science and Technology, China Agriculture University, Beijing, 100193, China
文摘
Long-term in vitro maintenance of embryonic stem cell (ESC) pluripotency enables the pluripotency and differentiation of ESCs in animals to be investigated. The ability to successfully maintain and differentiate chicken embryonic stem cells (cESCs) would provide a useful tool for avian biology research and would be a resource directly applicable to agricultural production. In this study, endogenous chicken pluripotency transcription factors, POUV, Sox-2, Nanog and Lin28 were cloned and expressed as recombinant proteins containing a nine consecutive arginine protein transduction domain (PTD). cESCs were cultured with these recombinant proteins to maintain cESC pluripotency in vitro. Cultured cESCs exhibited typical characteristics of pluripotency, even after six generations of rapid doubling, including positive staining for stage-specific embryonic antigen I, and strong staining for alkaline phosphatase. Expression levels of the pluripotency markers, POUV, Nanog, C-Myc, Sox-2 and Lin28 were the same as in uncultured stage X blastoderm cells, and most significantly, the formation of embryoid bodies (EBs) by 6th generation cESCs confirmed the ability of these cultured cESCs to differentiate into cells of all three embryonic germ layers. Thus, transcription factors could be translocated through the cell membrane into the intracellular space of cESCs by using a PTD of nine consecutive arginines and the pluripotency of cESCs could be maintained in vitro for at least six generations.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.