Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection
详细信息    查看全文
  • 作者:Zhangshuan Hou (1)
    Mark L. Rockhold (1)
    Christopher J. Murray (1) Chris.Murray@pnl.gov
  • 关键词:Carbon sequestration &#8211 ; CO2 leakage &#8211 ; Seal integrity &#8211 ; Natural CO2 leakage pathways &#8211 ; Caprock properties &#8211 ; Caprock geology
  • 刊名:Environmental Earth Sciences
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:66
  • 期:8
  • 页码:2403-2415
  • 全文大小:791.4 KB
  • 参考文献:1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. doi:
    2. Audigane P, Gaus I, Czernichowski LI, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner Site, North Sea. Am J Sci 307(7):974–1008
    3. Birkholzer JT, Zhou Q (2009) Basin-scale hydrologic impacts of CO2 storage: regulatory and capacity implications. Lawrence Berkeley National Laboratory, Berkeley, California, Paper LBNL-1716E
    4. Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury Press, Pacific Grove, California
    5. Davison AC (2003) Statistical models. Cambridge University Press, New York
    6. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York
    7. Edigbo A, Class H, Helmig R (2007) CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput Geosci 11:103–115
    8. EIA (2011) Emission of greenhouse gases in the United States: 2009. Energy Information Administration, U.S. Department of Energy, Washington, DC, Brochure No. DOE/EIA-0573. http://www.eia.gov/environment/emissions/ghg_report/. Accessed 20 July 2011
    9. EPA (1994) Determination of maximum injection pressure for Class I wells. Water Division, U.S. Environmental Protection Agency Region 5, Chicago, IL, Underground Injection Control Section Regional Guidance #7. http://www.epa.gov/r5water/uic/r5guid/r5_07.htm. Accessed 29 March 2011
    10. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs
    11. FutureGen Alliance (2006) Mattoon site environmental information volume. Washington, DC. http://www.futuregenalliance.org/news/evi.stm. Accessed 23 March 2011
    12. Hastie TJ (1991) Generalized additive models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. CRC Press LLC, Boca Raton, pp 249–308, Chapter 7
    13. Hastie TJ, Pregibon D (1992) Generalized linear models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. CRC Press LLC, Boca Raton, pp 196–248, Chapter 6
    14. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London
    15. Hou Z, Rubin Y (2005) On MRE concepts and prior compatibility issues in vadose zone inverse and forward modeling. Water Resour Res 41:W12425. doi:
    16. IPCC (2005) Special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change (IPCC), technical report prepared by Working Group III, Cambridge University Press, New York
    17. Itasca (1997) FLAC3D manual. Fast Lagrangian analysis of continua in 3 dimensions: version 2.0. Itasca Consulting Group, Inc., Minneapolis
    18. Katz DL, Coats KH (1968) Underground storage of fluids. Ulrich’s Bookstore, Ann Arbor
    19. Leetaru HE, Morse DG, Bauer R, Frailey S, Keefer D, Kolata D, Korose C, Mehnert DMW, Rittenhouse S, Drahovzal J, Fisher S, McBride J (2005) Saline reservoirs as a sequestration target. In: Finley R (principal investigator) An assessment of geological carbon sequestration options in the Illinois Basin. Illinois State Geological Survey, Champaign, pp 253–324
    20. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London
    21. Nordbotten JM, Celia MA, Bachu S, Dahle H (2005) Semi-analytical solution for CO2 leakage through an abandoned well. Environ Sci Technol 39(2):602–611
    22. Pruess K, Garcia J (2001) Multiphase flow dynamics during CO2 injection into saline aquifers. Environ Geol 42:282–295. doi:10.1007/s00254-001-0498-3
    23. Pruess K, Xu T, Apps J, Garcıa J (2001) Numerical modeling of aquifer disposal of CO2. In: SPE/EPA/DOE Exploration and Production Environmental Conference, 26–28 February 2001, San Antonio, Pap SPE-66537
    24. Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2
    25. Schlomer S, Krooss BM (1997) Experimental characterization of the hydrocarbon sealing efficiency of cap rocks. Mar Pet Geol 14:565–580
    26. Soeder DJ (1988) Porosity and permeability of eastern Devonian gas shale. SPE [Society of Petroleum Engineers] Formation Evaluation 3(2):116–124. doi:10.2118/15213-PA
    27. Tarantola A (2005) Inverse problem theory and model parameter estimation. Soc Indus Appl Math, Philadelphia
    28. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (2009) Best practices for: monitoring, verification, and accounting of CO2 stored in deep geological formations, 1st edn. US Department of Energy, National Energy Technology Laboratory DOE/NETL-311/081508, Morgantown, West Virginia
    29. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York
    30. White MD, Oostrom M (2000) STOMP (Subsurface transport over multiple phases) version 2.0—theory guide. Pacific Northwest National Laboratory, Richland, Washington, PNNL-12030
    31. White MD, Oostrom M (2006) STOMP Subsurface transport over multiple phases version 4.0: user’s guide. Pacific Northwest National Laboratory, Richland, Washington, PNNL-15782
    32. Yang Y, Aplin AC (2007) Permeability and petrophysical properties of 30 natural mudstones. J Geophys Res 112:B03206. doi:
  • 作者单位:1. Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA
  • ISSN:1866-6299
文摘
Numerical models are essential tools in fully understanding the fate of injected CO2 for commercial-scale sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprocks. This effort requires sampling the physically measurable range of caprock and reservoir properties, and performing numerical simulations of CO2 migration and leakage. In this study, factors affecting CO2 leakage through intact caprocks are identified. Their physical ranges are determined from the literature from various field sites. A quasi-Monte Carlo sampling approach is used such that the full range of caprock and reservoir properties can be evaluated without bias and redundant simulations. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water–salt–CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through caprocks are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. The study includes an evaluation of the dependence of CO2 injectivity on reservoir properties.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.