Role of the EpCAM (CD326) in prostate cancer metastasis and progression
详细信息    查看全文
  • 作者:Jie Ni (12)
    Paul J. Cozzi (23) pcozzi@unsw.edu.au
    Wei Duan (4)
    Sarah Shigdar (4)
    Peter H. Graham (12)
    Kearsley H. John (12)
    Yong Li (12) y.li@unsw.edu.au
  • 关键词:EpCAM &#8211 ; Prostate cancer &#8211 ; Immunotherapy &#8211 ; Prognosis &#8211 ; Circulating tumour cells &#8211 ; Targeted cancer therapy
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:31
  • 期:3-4
  • 页码:779-791
  • 全文大小:444.3 KB
  • 参考文献:1. Beltran, H., Beer, T. M., Carducci, M. A., de Bono, J., Gleave, M., Hussain, M., et al. (2011). New therapies for castration-resistant prostate cancer: efficacy and safety. European Urology, 60, 279–290.
    2. Logothetis, C. J. (2002). Docetaxel in the integrated management of prostate cancer. Current applications and future promise. Oncology (Williston Park, N.Y.), 16(6 Suppl 6), 63–72.
    3. Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England Journal of Medicine, 351(15), 1513–1520.
    4. Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351, 1502–1512.
    5. Calabro, F., & Sternberg, C. N. (2007). Current indications for chemotherapy in prostate cancer patients. European Urology, 51, 17–26.
    6. Petrylak, D. P. (2005). Future directions in the treatment of androgen-independent prostate cancer. Urology, 65(6 Suppl), 8–12.
    7. Higano, C. S., & Crawford, E. D. (2011). New and emerging agents for the treatment of castration-resistant prostate cancer. Urologic Oncology, 29(6 Suppl), S1–S8.
    8. Caffo, O., Pappagallo, G., Brugnara, S., Caldara, A., di Pasquale, M. C., Ferro, A., et al. (2012). Multiple rechallenges for castration-resistant prostate cancer patients responding to first-line docetaxel: assessment of clinical outcomes and predictive factors. Urology, 79, 644–649.
    9. Hao, J. L., Cozzi, P. J., Khatri, A., Power, C. A., & Li, Y. (2010). CD147/EMMPRIN and CD44 are potential therapeutic target for metastatic prostate cancer. Current Cancer Drug Targets, 10, 287–306.
    10. Li, Y., Cozzi, P. J., & Russell, P. J. (2010). Promising tumor-associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 30, 67–101.
    11. Li, Y., & Cozzi, P. J. (2010). Angiogenesis as a strategic target for prostate cancer therapy. Medicinal Research Reviews, 30, 23–66.
    12. Mukherji, D., Pezaro, C. J., & De-Bono, J. S. (2012). MDV3100 for the treatment of prostate cancer. Expert Opinion on Investigational Drugs, 21, 227–233.
    13. Villanueva, C., Bazan, F., Kim, S., Demarchi, M., Chaigneau, L., Thiery-Vuillemin, A., et al. (2011). Cabazitaxel: a novel microtubule inhibitor. Drugs, 71, 1251–1258.
    14. Bellmunt, J., Attard, G., Bahl, A., Huland, H., Klotz, L., Kuban, D., et al. (2012). Advances in the management of high-risk localised and metastatic prostate cancer. British Journal of Urology International, 109(Suppl 2), 8–13.
    15. Baeuerle, P. A., & Gires, O. (2007). EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 96, 417–423.
    16. Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38, 68–75.
    17. Went, P., Vasei, M., Bubendorf, L., Terracciano, L., Tornillo, L., Riede, U., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British Journal of Cancer, 94, 128–135.
    18. Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.
    19. Trzpis, M., McLaughlin, P. M., de Leij, L. M., & Harmsen, M. C. (2007). Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. The American Journal of Pathology, 171, 386–395.
    20. van der Gun, B. T., Melchers, L. J., Ruiters, M. H., de Leij, L. F., McLaughlin, P. M., & Rots, M. G. (2010). EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 31, 1913–1921.
    21. Seligson, D. B., Pantuck, A. J., Liu, X., Huang, Y., Horvath, S., Bui, M. H., et al. (2004). Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clinical Cancer Research, 10, 2659–2669.
    22. Songun, I., Litvinov, S. V., van de Velde, C. J., Pals, S. T., Hermans, J., & van Krieken, J. H. (2005). Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. British Journal of Cancer, 92, 1767–1772.
    23. Ensinger, C., Kremser, R., Prommegger, R., Spizzo, G., & Schmid, K. W. (2006). EpCAM overexpression in thyroid carcinomas: a histopathological study of 121 cases. Journal of Immunotherapy, 29, 569–573.
    24. Kimura, H., Kato, H., Faried, A., Sohda, M., Nakajima, M., Fukai, Y., et al. (2007). Prognostic significance of EpCAM expression in human esophageal cancer. International Journal of Oncology, 30, 171–179.
    25. Hwang, E. Y., Yu, C. H., Cheng, S. J., Chang, J. Y., Chen, H. M., & Chiang, C. P. (2009). Decreased expression of Ep-CAM protein is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine, 38, 87–93.
    26. Spizzo, G., Went, P., Dirnhofer, S., Obrist, P., Simon, R., Spichtin, H., et al. (2004). High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Research and Treatment, 86, 207–213.
    27. Varga, M., Obrist, P., Schneeberger, S., Muhlmann, G., Felgel-Farnholz, C., Fong, D., et al. (2004). Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clinical Cancer Research, 10, 3131–3136.
    28. Brunner, A., Prelog, M., Verdorfer, I., Tzankov, A., Mikuz, G., & Ensinger, C. (2008). EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. Journal of Clinical Pathology, 61, 307–310.
    29. Fong, D., Steurer, M., Obrist, P., Barbieri, V., Margreiter, R., Amberger, A., et al. (2008). Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. Journal of Clinical Pathology, 61, 31–35.
    30. Nubel, T., Preobraschenski, J., Tuncay, H., Weiss, T., Kuhn, S., Ladwein, M., et al. (2009). Claudin-7 regulates EpCAM-mediated functions in tumor progression. Molecular Cancer Research, 7, 285–299.
    31. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8, 755–768.
    32. Osta, W. A., Chen, Y., Mikhitarian, K., Mitas, M., Salem, M., Hannun, Y. A., et al. (2004). EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Research, 64, 5818–5824.
    33. Maetzel, D., Denzel, S., Mack, B., Canis, M., Went, P., Benk, M., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.
    34. Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69, 5627–5629.
    35. Maaser, K., & Borlak, J. (2008). A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. British Journal of Cancer, 99, 1635–1643.
    36. Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27, 1782–1791.
    37. Benko, G., Spajic, B., Kruslin, B., Tomas, D. (2012). Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urologic Oncology (in press).
    38. Tewes, M., Aktas, B., Welt, A., Mueller, S., Hauch, S., Kimmig, R., et al. (2009). Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Research and Treatment, 115, 581–590.
    39. Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.
    40. Mostert, B., Sleijfer, S., Foekens, J. A., & Gratama, J. W. (2009). Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treatment Reviews, 35, 463–474.
    41. Kaiser, J. (2010). Medicine. Cancer's circulation problem. Science, 327, 1072–1074.
    42. Miller, M. C., Doyle, G. V., & Terstappen, L. W. (2010). Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. Journal of Oncology, 2010, 617421.
    43. Morgan, T. M., Lange, P. H., & Vessella, R. L. (2007). Detection and characterization of circulating and disseminated prostate cancer cells. Frontiers in Bioscience, 12, 3000–3009.
    44. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235–1239.
    45. Stott, S. L., Hsu, C. H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., et al. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107, 18392–18397.
    46. Smerage, J. B., & Hayes, D. F. (2006). The measurement and therapeutic implications of circulating tumour cells in breast cancer. British Journal of Cancer, 94, 8–12.
    47. Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65, 713–718.
    48. Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., et al. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13, 7053–7058.
    49. Garcia, J. A., Rosenberg, J. E., Weinberg, V., Scott, J., Frohlich, M., Park, J. W., et al. (2007). Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. British Journal of Urology International, 99, 519–524.
    50. de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., et al. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.
    51. Jost, M., Day, J. R., Slaughter, R., Koreckij, T. D., Gonzales, D., Kinnunen, M., et al. (2010). Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood. Molecular Cancer, 9, 174.
    52. Kolostova, K., Pinterova, D., Hoffman, R. M., & Bobek, V. (2011). Circulating human prostate cancer cells from an orthotopic mouse model rapidly captured by immunomagnetic beads and imaged by GFP expression. Anticancer Research, 31, 1535–1539.
    53. Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., et al. (2011). A direct comparison of Cell Search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. British Journal of Cancer, 105, 847–853.
    54. Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clinical Cancer Research, 13, 920–928.
    55. Wang, S., Owens, G. E., & Tseng, H. R. (2011). Nano “fly paper” technology for the capture of circulating tumor cells. Methods in Molecular Biology, 726, 141–150.
    56. Hoshino, K., Huang, Y. Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., et al. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11, 3449–3457.
    57. Zheng, X., Cheung, L. S., Schroeder, J. A., Jiang, L., & Zohar, Y. (2011). A high-performance microsystem for isolating circulating tumor cells. Lab on a Chip, 11, 3269–3276.
    58. Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., et al. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83, 2301–2309.
    59. Poczatek, R. B., Myers, R. B., Manne, U., Oelschlager, D. K., Weiss, H. L., Bostwick, D. G., et al. (1999). Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. The Journal of Urology, 162, 1462–1466.
    60. Went, P. T., Lugli, A., Meier, S., Bundi, M., Mirlacher, M., Sauter, G., et al. (2004). Frequent EpCam protein expression in human carcinomas. Human Pathology, 35, 122–128.
    61. Zellweger, T., Ninck, C., Bloch, M., Mirlacher, M., Koivisto, P. A., Helin, H. J., et al. (2005). Expression patterns of potential therapeutic targets in prostate cancer. International Journal of Cancer, 113, 619–628.
    62. Cunha, G. R., Ricke, W., Thomson, A., Marker, P. C., Risbridger, G., Hayward, S. W., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.
    63. Ghosh, K., & Ingber, D. E. (2007). Micromechanical control of cell and tissue development: implications for tissue engineering. Advanced Drug Delivery Reviews, 59, 1306–1318.
    64. Chung, L. W. (2005). Better to give than receive: my exciting journey in science. Cancer Biology & Therapy, 4, 348–352.
    65. Mukherjee, S., Richardson, A. M., Rodriguez-Canales, J., Ylaya, K., Erickson, H. S., Player, A., et al. (2009). Identification of EpCAM as a molecular target of prostate cancer stroma. The American Journal of Pathology, 175, 2277–2287.
    66. Furusato, B., Tsunoda, T., Shaheduzzaman, S., Nau, M. E., Vahey, M., Petrovics, G., et al. (2010). Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology. Urology, 75, 768–772.
    67. Sung, S. Y., & Chung, L. W. (2002). Prostate tumor–stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 70, 506–521.
    68. Richardson, A. M., Woodson, K., Wang, Y., Rodriguez-Canales, J., Erickson, H. S., Tangrea, M. A., et al. (2007). Global expression analysis of prostate cancer-associated stroma and epithelia. Diagnostic Molecular Pathology, 16, 189–197.
    69. Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23, 5748–5758.
    70. Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3, 859–868.
    71. Sankpal, N. V., Mayfield, J. D., Willman, M. W., Fleming, T. P., & Gillanders, W. E. (2011). Activator protein 1 (AP-1) contributes to EpCAM-dependent breast cancer invasion. Breast Cancer Research, 13, R124.
    72. Gostner, J. M., Fong, D., Wrulich, O. A., Lehne, F., Zitt, M., Hermann, M., et al. (2011). Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer, 11, 45.
    73. Carpenter, G., & Red Brewer, M. (2009). EpCAM: another surface-to-nucleus missile. Cancer Cell, 15, 165–166.
    74. Denzel, S., Maetzel, D., Mack, B., Eggert, C., Barr, G., & Gires, O. (2009). Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer, 9, 402.
    75. Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., et al. (2002). In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. International Journal of Cancer, 100, 101–110.
    76. Kurtz, J. E., & Dufour, P. (2010). Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opinion on Biological Therapy, 10, 951–958.
    77. Gires, O., & Bauerle, P. A. (2010). EpCAM as a target in cancer therapy. Journal of Clinical Oncology, 28(15), e239–240. author reply e241–e232.
    78. Bellati, F., Napoletano, C., Gasparri, M. L., Visconti, V., Zizzari, I. G., Ruscito, I., et al. (2011). Monoclonal antibodies in gynecological cancer: a critical point of view. Clinical & Developmental Immunology, 2011, 890758.
    79. Groth, A., Salnikov, A. V., Ottinger, S., Gladkich, J., Liu, L., Kallifatidis, G., et al. (2012). New gene-immunotherapy combining TRAIL-lymphocytes and EpCAMxCD3 bispecific antibody for tumor targeting. Clinical Cancer Research, 18, 1028–1038.
    80. Oberneder, R., Weckermann, D., Ebner, B., Quadt, C., Kirchinger, P., Raum, T., et al. (2006). A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. European Journal of Cancer, 42, 2530–2538.
    81. Suzuki, K., Nakamura, K., Kato, K., Hamada, H., & Tsukamoto, T. (2007). Exploration of target molecules for prostate cancer gene therapy. The Prostate, 67, 1163–1173.
    82. Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J., & Faulstich, H. (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. Journal of the National Cancer Institute, 104, 622–634.
    83. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136, 1012–1024.
    84. Terris, B., Cavard, C., & Perret, C. (2010). EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. Journal of Hepatology, 52, 280–281.
    85. Kawashima, R., Abei, M., Fukuda, K., Nakamura, K., Murata, T., Wakayama, M., et al. (2011). EpCAM- and EGFR-targeted selective gene therapy for biliary cancers using Z33-fiber-modified adenovirus. International Journal of Cancer, 129, 1244–1253.
    86. Marme, A., Strauss, G., Bastert, G., Grischke, E. M., & Moldenhauer, G. (2002). Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. International Journal of Cancer, 101, 183–189.
    87. Salnikov, A. V., Groth, A., Apel, A., Kallifatidis, G., Beckermann, B. M., Khamidjanov, A., et al. (2009). Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. Journal of Cellular and Molecular Medicine, 13, 4023–4033.
    88. Ammons, W. S., Bauer, R. J., Horwitz, A. H., Chen, Z. J., Bautista, E., Ruan, H. H., et al. (2003). In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia, 5, 146–154.
    89. Goel, S., Bauer, R. J., Desai, K., Bulgaru, A., Iqbal, T., Strachan, B. K., et al. (2007). Pharmacokinetic and safety study of subcutaneously administered weekly ING-1, a human engineere monoclonal antibody targeting human EpCAM, in patients with advanced solid tumors. Annals of Oncology, 18, 1704–1707.
    90. Winkler, J., Martin-Killias, P., Pluckthun, A., & Zangemeister-Wittke, U. (2009). EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Molecular Cancer Therapeutics, 8, 2674–2683.
    91. Seimetz, D., Lindhofer, H., & Bokemeyer, C. (2010). Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treatment Reviews, 36, 458–467.
    92. Heiss, M. M., Strohlein, M. A., Jager, M., Kimmig, R., Burges, A., Schoberth, A., et al. (2005). Immunotherapy of malignant ascites with trifunctional antibodies. International Journal of Cancer, 117, 435–443.
    93. Burges, A., Wimberger, P., Kumper, C., Gorbounova, V., Sommer, H., Schmalfeldt, B., et al. (2007). Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clinical Cancer Research, 13, 3899–3905.
    94. Jager, M., Schoberth, A., Ruf, P., Hess, J., Hennig, M., Schmalfeldt, B., et al. (2012). Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research, 72, 24–32.
    95. Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., & Duan, W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Science, 102, 991–998.
    96. Barbas, A. S., & White, R. R. (2009). The development and testing of aptamers for cancer. Current Opinion in Investigational Drugs, 10, 572–578.
    97. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.
    98. Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.
    99. O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.
    100. Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.
    101. Lugli, A., Iezzi, G., Hostettler, I., Muraro, M. G., Mele, V., Tornillo, L., et al. (2010). Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. British Journal of Cancer, 103, 382–390.
    102. Han, M. E., Jeon, T. Y., Hwang, S. H., Lee, Y. S., Kim, H. J., Shim, H. E., et al. (2011). Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cellular and Molecular Life Sciences, 68, 3589–3605.
    103. Meirelles, K., Benedict, L. A., Dombkowski, D., Pepin, D., Preffer, F. I., Teixeira, J., et al. (2012). Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 109, 2358–2363.
    104. Coumans, F. A., Doggen, C. J., Attard, G., de Bono, J. S., & Terstappen, L. W. (2010). All circulating EpCAM+CK+CD45− objects predict overall survival in castration-resistant prostate cancer. Annals of Oncology, 21, 1851–1857.
    105. Aktas, B., Muller, V., Tewes, M., Zeitz, J., Kasimir-Bauer, S., Loehberg, C. R., et al. (2011). Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecologic Oncology, 122, 356–360.
  • 作者单位:1. Cancer Care Centre, St. George Hospital, Gray St Kogarah, Sydney, NSW 2217, Australia2. St George Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia3. Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia4. School of Medicine, Deakin University, Waurn Ponds, Victoria 3217, Australia
  • ISSN:1573-7233
文摘
Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell–cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.