Improvement in thermal stability and catalytic activity of titanium containing mordenite by cerium using hydrothermal methods for hydroxylation of benzene into phenol
详细信息    查看全文
  • 作者:Ibraheem O. Ali ; Hussien A. El Sayed…
  • 关键词:Mordenite synthesis ; Ce–Ti–Mordenite ; Hydrothermal synthesis ; Thermal kinetic ; Thermogravimetric analysis (TG)
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1129-1139
  • 全文大小:1,132 KB
  • 参考文献:1.Shiokawa K, Ito M, Itabashi K. Crystal structure of synthetic mordenites. Zeolites. 1989;9:170–6.CrossRef
    2.Meier WM, Kristallogr Z. Silicate Structures and dispersion system. Cryst Struct Mordenite. 1961;115:439.
    3.Barrer RM, White EAD. The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates. J Chem Soc. 1951;283:1267–78.CrossRef
    4.Bajpai PK. Synthesis of mordenite type zeolite. Zeolites. 1986;6:2–8.CrossRef
    5.Whittemore OJ Jr. Synthesis of siliceous mordenites. Am Mineral. 1972;57:1146–51.
    6.Sakurada S, Tagaya N, Maeshima T, Toyoizumi T, Numura T, Hasimoto T. Synthetic crystalline aluminosilicate composition and method for the production thereof, EP Patent No. 0040104A1, 1981.
    7.Arika J, Miyazaki H, Itabashi K, Aimoto M. Process for preparation of mordenite type zeolite. EP Patent No. 0109729, 1984.
    8.Mohamed MM, Salama TM, Othman I, Abd Ellah I. Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous Mesoporous Mater. 2005;84:84–96.CrossRef
    9.Mohamed MM. Structural and acidic characteristics of Cu–Ni-modified acid-leached mordenites. J Colloid Inter Sci. 2003;265:106–14.CrossRef
    10.Salama TM, Mohamed MM, Othman I, El-shobaky GA. Structural and textural characteristics of Ce-containing mordenite and ZSM-5 solids and FT-IR spectroscopic investigation of the reactivity of NO gas adsorbed on them. Appl Catal A. 2005;286:85–95.CrossRef
    11.Millini R, Massara EP, Perego G, Bellussi G. Framework composition of titanium silicalite-1. J Catal. 1992;137:497–503.CrossRef
    12.Thangaraj A, Kumar R, Mirajkar SP, Ratnasamy P. Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. J Catal. 1991;130:1–8.CrossRef
    13.Goutam D, Turek AM, Wachs IE, Huybrechts DRC, Jacobs PA. Characterization of titania silicalites. Zeolites. 1993;13:365–73.CrossRef
    14.Astorino E, Peri JB, Willey RJ, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. J Catal. 1995;157:482–500.CrossRef
    15.Lin JN, Chen JH, Hsiao CY, Kang YM, Wan BZ. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation. Appl Catal B. 2002;36:19–29.CrossRef
    16.Mohamed MM, Salama TM, Othman AI, El-Shobaky GA. Low temperature water-gas shift reaction on cerium containing mordenites prepared by different methods. Appl Catal A. 2005;279:23–33.CrossRef
    17.Salama TM, Ali IO, Mohamed MM. Synthesis and characterization of mordenites encapsulated titania nanoparticles: photocatalytic degradation of meta-chlorophenol. J Mol Catal A. 2007;273:198–210.CrossRef
    18.Lee Y, Guanghui H, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP. Raman analysis of mode softening in nanoparticle CeO2−δ and Au-CeO2−δ during CO oxidation. J Am Chem Soc. 2011;133:12952–5.CrossRef
    19.Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: synthesis, characterization, and catalytic application. Appl Catal A. 2007;317:1–10.CrossRef
    20.Takagi Y, Komatsu T, Kitabata Y. Crystallization of zeolite beta in the presence of chiral amine or rhodium complex. Microporous Mesoporous Mater. 2008;109:567–76.CrossRef
    21.Chammingkwan P, Hoelderich WF, Mongkhonsi T, Kanchanawanichakul P. Hydroxylation of benzene over TS-PQ™ catalyst. Appl Catal A. 2009;352:1–9.CrossRef
    22.Yamanaka I, Katagiri M, Takenaka S, Otsuka K. Direct synthesis of phenol from benzene with O2 over VMo-oxide/SiO2 catalyst. Stud Surf Sci Catal. 2000;130:809–14.CrossRef
    23.Liptáková B, Báhidský M, Hronec M. Preparation of phenol from benzene by one-step reaction. Appl Catal A. 2004;263:33–8.CrossRef
    24.Bragg WH, Bragg WL. The structure of the diamond. Nature. 1913;91:557.CrossRef
    25.de Boer JH, Linsen BG, Osinga TJ. Studies on pore systems in catalysts: VI. The universal t curve. J Catal. 1964;4:643–8.
    26.Greenberg AE, Clesceri LS, Eaton AD, editors. Standard methods for the examination of water and wastewater. 17th ed. Washington, DC: American Public Health Association (APHA); 1989.
    27.Tor A, Cengeloglu Y, Aydin ME, Ersoz M. Removal of phenol from aqueous phase by using neutralized red mud. J Colloid Inter Sci. 2006;300:498–503.CrossRef
    28.Hisham MA, Moustafa EM, Ehab AA. Synthesis of mordenite zeolite in absence of organic template. Adv Powder Technol. 2012;23:757–60.CrossRef
    29.Xu A-W, Gao Y, Liu H-Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal. 2002;207:151–7.CrossRef
    30.Carati A, Flego C, Massara EP, Millini R, Carluccio L, Parker WO Jr, Bellussi G. Stability of Ti in MFI and Beta structures: a comparative study. Microporous Mesoporous Mater. 1999;30:137–44.CrossRef
    31.Gisle O, Sjoblom J, Michael S. A multivariate analysis of the synthesis conditions of mesoporous materials. Microporous Mesoporous Mater. 2000;34:291–9.CrossRef
    32.Round CI, Williams CD, Duke CVA. Co-ZSM-5 and Mn-ZSM-5 synthesised directly from aqueous fluoride gels. Chem Commun. 1997;7345:1849–50.CrossRef
    33.Kalita B, Talukdar AK. Synthesis and characterization of Ce doped MFI zeolite. Mater Chem Phys. 2012;133:713–7.CrossRef
    34.Kadgaonkar MD, Laha SC, Kumar P, Mirajkar SP, Kuma R. Cerium-containing MCM-41 materials as selective acylation and alkylation catalysts. Catal Today. 2004;97:225–31.CrossRef
    35.Laha SC, Mukherjee P, Sainkar SR, Kumar R. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. J Catal. 2002;207:213–23.CrossRef
    36.Cheng Y, Jian-Sheng L, Lian-Jun W, Xiu-Yun S, Xiao-Dong L. Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol. 2006;51:210–8.CrossRef
    37.Shuo W, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS. Synthesis of heteroatom substituted SBA-15 by the “pH-adjusting” method. Chem Mater. 2004;16:486–92.CrossRef
    38.Camblor MA, Corma A, Valencia S. Characterization of nanocrystalline zeolite Beta. Microporous Mesoporous Mater. 1998;25:59–74.CrossRef
    39.Asswad J, Dewaele N, Nagy JB, Hubery RA, Gabelica Z, Derouanne EG, Crea F, Aiello R, Nastro A. Identification of different tetrapropylammonium cations occluded in ZSM-5 zeolite by combined thermal analysis (t.g.-d.t.a.) and 13C-n.m.r. spectroscopy. Zeolites. 1988;8:221–7.CrossRef
    40.Yao W, Chen Y, Min L, Fang H, Yan Z, Wang H, Wang J. Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. J Mol Catal A. 2006;246:162–6.CrossRef
    41.Jaimy KB, Safeena VP, Ghosh S, Hebalkar NY, Warrier KGK. Photocatalytic activity enhancement in doped titanium dioxide by crystal defects. Dalton Trans. 2012;41:4824–32.CrossRef
    42.Othman I, Mohamed RM, Ibrahim IA, Mohamed MM. Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye. Appl Catal A. 2006;299:95–102.CrossRef
    43.Canali L, Sherrington DC. Utilisation of homogeneous and supported chiral metal (salen) complexes in asymmetric catalysis. Chem Soc Rev. 1999;28:85–93.CrossRef
    44.Ali IO. Sol–gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol. J Therm Anal Calorim. 2014;116:805–16.CrossRef
  • 作者单位:Ibraheem O. Ali (1)
    Hussien A. El Sayed (2)
    Karam S. El-Nasser (1)
    Ahmed A. Shabana (1)

    1. Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
    2. Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Cerium–titanium–mordenite (Ce–Ti/Mor) were synthesized using ortho-phenylenediamine (OPDA) as a templating agent, and varying amounts of cerium (0.5–4.0 mol%) have been successfully prepared by direct hydrothermal synthesis. These micropore materials were compared with pure mordenite synthesized at the same conditions. The influence of Ce/Ti–Mor composite on the phase, crystal structure and morphology has been investigated by X-ray diffraction (XRD), scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The probable assignments of the thermal degradation products of OPDA in Ce–Ti/Mor samples were studied by complementary thermogravimetric analysis and differential scanning calorimetry. XRD appeared of α-quartz (Si3O6) phase in Ti–Mor disappeared by the addition of Ce and reformation of pure mordenite structure. The increase in unit cell parameters observed with replacement Al by Ti is indicative of incorporation of Ti into the framework structure of microporous material mordenite, while a decrease in unit cell by replacement of Ti by Ce attributed to the presence of Ce–O–Ti bond on the surface of mordenite. The hydroxylation of benzene to phenol has been extensively investigated using hydrogen peroxide as an oxidant. All the Ce-supported catalysts exhibited high catalytic activity in the oxidation of benzene. Keywords Mordenite synthesis Ce–Ti–Mordenite Hydrothermal synthesis Thermal kinetic Thermogravimetric analysis (TG)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.