A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves
详细信息    查看全文
  • 作者:Piotr K. Smolarkiewicz (1)
    Joanna Szmelter (2)
  • 关键词:unstructured mesh models ; nonoscillatory forward ; in ; time schemes ; atmospheric models ; soundproof equations ; mountain waves
  • 刊名:Acta Geophysica
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:59
  • 期:6
  • 页码:1109-1134
  • 全文大小:2784KB
  • 参考文献:1. Achatz, U., R. Klein, and F. Senf (2010), Gravity waves, scale asymptotics and the pseudo-incompressible equations, / J. Fluid Mech. 663, 120-47, DOI: 10.1017/S0022112010003411. CrossRef
    2. Axelsson, O. (1994), / Iterative Solution Methods, Cambridge University Press, Cambridge.
    3. Bacon, D.P., N.N. Ahmad, Z. Boybeyi, T.J. Dunn, M.S. Hall, P.C.S. Lee, R.A. Sarma, M.D. Turner, K.T. Waight, S.H. Young, and J.W. Zack (2000), A dynamically adapting weather and dispersion model: The operational multiscale environment model with grid adaptivity (OMEGA), / Month. Weather Rev. 128,7, 2044-067, DOI: 10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2. CrossRef
    4. Bacon, D.P., N.N. Ahmad, T.J. Dunn, M.C. Monteith, and A. Sarma (2008), An operational multiscale system for hazards prediction, mapping, and response, / Nat. Hazards 44,3, 317-27, DOI: 10.1007/s11069-007-9132-3. CrossRef
    5. Barth, T.J. (1992), Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. In: / Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD Reports series 787, AGARD, Neuilly sur Seine, 6.1-.61.
    6. Behrens, J., S. Reich, M. Lauter, B. Wingate, and D. Williamson (2010), The 2010 Workshop on the Solution of PDEs on the Sphere, http://www.awipotsdam.de/pde2010/pdes2010\_program.pdf.
    7. Birkhoff, G., and R.E. Lynch (1984), / Numerical Solution of Elliptic Problems, SIAM 6, Cambridge University Press, Cambridge.
    8. Bunge, H.-P., M.A. Richards, and J.R. Baumgardner (1997), A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, / J. Geophys. Res. 102,B6, 11,991-2,007, DOI: 10.1029/96JB03806. CrossRef
    9. Davies, H.C. (1983), Limitations of some common lateral boundary schemes used in regional NWP models, / Month. Weather Rev. 111,5, 1002-012, DOI: 10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2. CrossRef
    10. Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003), Validity of anelastic and other equation sets as inferred from normal-mode analysis, / Quart. J. Roy. Met. Soc. 129, 2761-775, DOI: 10.1256/qj.02.1951.
    11. Doyle, J.D., D.R. Durran, C. Chen, B.A. Colle, M. Georgelin, V. Grubisic, W.R. Hsu, C.Y. Huang, D. Landau, Y.L. Lin, G.S. Poulos, W.Y. Sun, D.B. Weber, M.G. Wurtele, and M. Xue (2000), An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder Windstorm, / Month. Weather Rev. 128,3, 901-14, DOI: 10.1175/1520-0493(2000)128<0901:AIOMPW>2.0.CO;2. CrossRef
    12. Durran, D.R. (1989), Improving the anelastic approximation, / J. Atmos. Sci. 46,11, 1453-461, DOI: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2. CrossRef
    13. Durran, D.R. (2008), A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow, / J. Fluid Mech. 601, 365-79, DOI: 10.1017/S0022112008000608. CrossRef
    14. Eisenstat, S.C., H.C. Elman, and M.H. Schultz (1983), Variational iterative methods for nonsymmetric systems of linear equations, / SIAM J. Numer. Anal. 20,2, 345-57. CrossRef
    15. Ghizaru, M., P. Charbonneau, and P.K. Smolarkiewicz (2010), Magnetic cycles in global large-eddy simulations of solar convection, / Astrophys. J. Lett. 715,2, L133–L137, DOI: 10.1088/2041-8205/715/2/L133. CrossRef
    16. Grabowski, W.W., and P.K. Smolarkiewicz (2002), A multiscale anelastic model for meteorological research, / Month. Weather Rev. 130,4, 939-56, DOI: 10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2. CrossRef
    17. Greenbaum, A. (2002), / Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA.
    18. Klein, R. (2011), On the regime of validity of sound-proof model equations for atmospheric flows. In: / Proc. of the ECMWF Workshop on Nonhydrostatic Modelling, 8-0 November, 2010, Reading, UK, 35-3.
    19. Klein, R., U. Achatz, D. Bresch, O.M. Knio, and P.K. Smolarkiewicz (2010), Regime of validity of soundproof atmospheric flow models, / J. Atmos. Sci. 67,10, 3226-237, DOI: 10.1175/2010JAS3490.1. CrossRef
    20. Kosloff, R., and D. Kosloff (1986), Absorbing boundaries for wave propagation problems, / J. Comput. Phys. 63,2, 363-76, DOI:10.1016/0021-9991(86)90199-3. CrossRef
    21. Lipps, F.B. (1990), On the anelastic approximation for deep convection, / J. Atmos. Sci. 47,14, 1794-798, DOI: 10.1175/1520-0469(1990)047<1794:OTAAFD>2.0.CO;2 CrossRef
    22. Lipps, F.B., and R.S. Hemler (1982), A scale analysis of deep moist convection and some related numerical calculations, / J. Atmos. Sci. 39,10, 2192-210, DOI:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2. CrossRef
    23. Miller, M.J., and P.K. Smolarkiewicz (2008), Predicting weather, climate and extreme events, Preface, / J. Comput. Phys. 227,7, 3429-430, DOI:10.1016/j.jcp.2008.01.001. CrossRef
    24. Nikiforakis, N. (2009), Mesh generation and mesh adaptation for large-scale Earthsystem modelling, Introduction, / Phil. Trans. R. Soc. A 367, 4473-481, DOI:10.1098/rsta.2009.0197. CrossRef
    25. Piotrowski, Z.P., A. A. Wyszogrodzki, and P.K. Smolarkiewicz (2011), Towards petascale simulation of atmospheric circulations with soundproof equations, / Acta Geophys. 59,6, DOI: 10.2478/s11600-011-049-6.
    26. Prusa, J.M., and P.K. Smolarkiewicz (2003), An all-scale anelastic model for geophysical flows: dynamic grid deformation, / J. Comput. Phys. 190,2, 601-22, DOI: 10.1016/S0021-9991(03)00299-7. CrossRef
    27. Prusa, J.M., P.K. Smolarkiewicz, and R.R. Garcia (1996), Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, / J. Atmos. Sci. 53,15, 2186-216, DOI: 10.1175/1520-0469(1996)053<2186:PABAHA>2.0.CO;2. CrossRef
    28. Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2001), Simulations of gravity wave induced turbulence using 512 PE Cray T3E, / Int. J. Appl. Math. Comput. Sci. 11,4, 883-97.
    29. Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, / Comput. Fluids 37,9, 1193-207, DOI:10.1016/j.compfluid.2007.12.001. CrossRef
    30. Saad, Y. (1995), / Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 447 pp.
    31. Smith, R.B. (1979), The influence of the mountains on the atmosphere, / Adv. Geophys. 21, 87-30, DOI: 10.1016/S0065-2687(08)60262-9. CrossRef
    32. Smolarkiewicz, P.K. (1983), A simple positive definite advection scheme with small implicit diffusion, / Month.Weather Rev. 111,3, 479-86, DOI: 10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.CO;2. CrossRef
    33. Smolarkiewicz, P.K. (1984), A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, / J. Comput. Phys. 54,2, 325-62, DOI: 10.1016/0021-9991(84)90121-9. CrossRef
    34. Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, / Int. J. Numer. Meth. Fluids 50,10, 1123-144, DOI:10.1002/fld.1071. CrossRef
    35. Smolarkiewicz, P.K. (2011), Modeling atmospheric circulations with soundproof equations. In: / Proc. of the ECMWF Workshop on Nonhydrostatic Modelling, 8-0 November, 2010, Reading, UK, 1-5.
    36. Smolarkiewicz, P.K., and A. D?rnbrack (2008), Conservative integrals of adiabatic Durran’s equations, / Int. J. Numer. Meth. Fluids 56,8, 1513-519, DOI:10.1002/fld.1601. CrossRef
    37. Smolarkiewicz, P.K., and L.G. Margolin (1993), On forward-in-time differencing for fluids: Extension to a curvilinear framework, / Month. Weather Rev. 121,6, 1847-859, DOI: 10.1175/1520-0493(1993)121<1847:OFITDF>2.0.CO;2. CrossRef
    38. Smolarkiewicz, P.K., and L.G. Margolin (1994), Variational solver for elliptic problems in atmospheric flows, / Appl. Math. Comp. Sci. 4, 527-51.
    39. Smolarkiewicz, P.K., and L.G. Margolin (1997), On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows, / Atmos. Ocean Sp. 35,1, 127-52, DOI: 10.1080/07055900.1997.9687345. CrossRef
    40. Smolarkiewicz, P.K., and L.G. Margolin (2000), Variational methods for elliptic problems in fluid models. In: / Proc. Workshop on Developments in Numerical Methods for Very High Resolution Global Models- 5- June 2000, ECMWF, Reading, UK, 137-59.
    41. Smolarkiewicz, P.K., and J. Szmelter (2005a), Multidimensional positive definite advection transport algorithm (MPDATA): an edge-based unstructured-data formulation, / Int. J. Numer. Meth. Fluids 47,10-1, 1293-299, DOI:10.1002/fld.848. CrossRef
    42. Smolarkiewicz, P.K., and J. Szmelter (2005b), MPDATA: An edge-based unstructured-grid formulation, / J. Comput. Phys. 206,2, 624-49, DOI:10.1016/j.jcp.2004.12.021. CrossRef
    43. Smolarkiewicz, P.K., and J. Szmelter (2009), Iterated upwind schemes for gas dynamics, / J. Comput. Phys. 228, 33-4, doi:10.1016/j.jcp.2008.08.008. CrossRef
    44. Smolarkiewicz, P.K., and C.L. Winter (2010), Pores resolving simulation of Darcy flows, / J. Comput. Phys. 229,9, 3121-133, DOI: 10.1016/j.jcp.2009.12.031. CrossRef
    45. Smolarkiewicz, P.K., V. Grubisic, and L.G. Margolin (1997), On forward-in-time differencing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations, / Month. Weather Rev. 125,4, 647-54, DOI: 10.1175/1520-0493(1997)125<0647:OFITDF>2.0.CO;2. CrossRef
    46. Smolarkiewicz, P.K., L.G. Margolin, and A.A. Wyszogrodzki (2001), A class of nonhydrostatic global models, / J. Atmos. Sci. 58,4, 349-64, DOI: 10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2. CrossRef
    47. Smolarkiewicz, P.K., C. Temperton, S.J. Thomas, and A.A. Wyszogrodzki (2004), Spectral preconditioners for nonhydrostatic atmospheric models: extreme applications. In: / Proc. ECMWF Seminar Series on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, 6-0 September, 2004, Reading, UK, 203-20.
    48. Smolarkiewicz, P.K., R. Sharman, J. Weil, S.G. Perry, D. Heist, and G. Bowker (2007), Building resolving large-eddy simulations and comparison with wind tunnel experiments, / J. Comput. Phys. 227, 633-53, DOI: 10.1016/j.jcp.2007.08.005. CrossRef
    49. Szmelter, J., and P.K. Smolarkiewicz (2006), MPDATA error estimator for mesh adaptivity, / Int. J. Numer. Meth. Fluids 50,10, 1269-293, DOI: 10.1002/fld.1118. CrossRef
    50. Szmelter, J., and P.K. Smolarkiewicz (2010), An edge-based unstructured mesh discretisation in geospherical framework, / J. Comput. Phys. 229,13, 4980-995, DOI: 10.1016/j.jcp.2010.03.017. CrossRef
    51. Szmelter, J., and P.K. Smolarkiewicz (2011), An edge-based unstructured mesh framework for atmospheric flows, / Comput. Fluids 46, 455-60, DOI:10.1016/j.compfluid.2010.10.020. CrossRef
    52. Warn-Varnas, A., J. Hawkins, P.K. Smolarkiewicz, S.A. Chin-Bing, D. King, and Z. Hallock (2007), Solitary wave effects north of Strait of Messina, / Ocean Model. 18,2, 97-21, DOI: 10.1016/j.ocemod.2007.03.003. CrossRef
    53. Wedi, N.P., and P.K. Smolarkiewicz (2004), Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries, / J. Comput. Phys. 193, 1-0, DOI: 10.1016/j.jcp.2003.07.034. CrossRef
    54. Williamson, D.L. (2008), The evolution of dynamical cores for global atmospheric models, / J. Meteorol. Soc. Jpn. 85B, 241-68, DOI: 10.2151/jmsj.85B.241. CrossRef
    55. Wurtele, M.G., R.D. Sharman, and A. Datta (1996), Atmospheric lee waves, / Ann. Rev. Fluid. Mech. 28, 429-76, DOI: 10.1146/annurev.fl.28.010196.002241. CrossRef
  • 作者单位:Piotr K. Smolarkiewicz (1)
    Joanna Szmelter (2)

    1. National Center for Atmospheric Research, Boulder, CO, USA
    2. Loughborough University, Leicestershire, UK
  • ISSN:1895-7455
文摘
A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-47)].
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.