Investigation of factors affecting dynamic modulus and phase angle of various asphalt concrete mixtures
详细信息    查看全文
  • 作者:Yasir Ali ; Muhammad Irfan ; Sarfraz Ahmed ; Shahab Khanzada…
  • 关键词:Asphalt concrete ; Mixtures ; Dynamic modulus ; Regression model
  • 刊名:Materials and Structures
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:49
  • 期:3
  • 页码:857-868
  • 全文大小:1,305 KB
  • 参考文献:1.AASHTO, TP 62-07 (2007) Standard test method for determining the dynamic modulus of hot mix asphalt (HMA). American Association of State Highway and Transportation Officials, Washington DC
    2.Abu Abdo AM (2012) Sensitivity analysis of a new dynamic modulus (|E*|) model for asphalt mixtures. Road Mater Pavement Design 13(3):549–555CrossRef
    3.Apeagyei AK, Diefenderfer BK, Diefenderfer SD (2012) Development of dynamic modulus master curves for hot-mix asphalt with abbreviated testing temperature. Int J Pavement Eng 13(2):98–109CrossRef
    4.Apeagyei AK (2011) Rutting as a function of dynamic modulus and gradation. J Mater Civ Eng 23(9):1302–1310CrossRef
    5.Asphalt Institute (1997) Mix design methods for asphalt concrete and other hot-mix types. Manual Series No. 2, (MS-2). Lexington
    6.Bayat AR, Knight M (2010) Investigation of hot-mix asphalt dynamic modulus by means of field-measured pavement response. J Transp Res Board 2154:138–145CrossRef
    7.Di Benedetto H, Partl MN, Francken L, La Roche De, Saint André C (2001) Stiffness testing for bituminous mixtures. Mater Struct 34(2):66–70CrossRef
    8.Bonaquist RF, Christensen DW, Stump W (2003) Simple performance tester for superpave mix design. National Cooperative Highway Research Program (NCHRP), Report-513, TRB, Washington DC
    9.Biligiri KP, Way GB (2014) Predicted E* dynamic moduli of the Arizona mixes using asphalt binders placed over a 25-year period. Constr Build Mater 54(2):520–532CrossRef
    10.BS EN. British Standard Specification 13801-1. (2006) Bituminous mixtures. Material specifications asphalt concrete. British Standard Institute, London
    11.Cho Y-H, Park D-W, Hwang S-D (2010) A predictive equation for dynamic modulus of asphalt mixtures used in Korea. Constr Build Mater 24(1):513–519CrossRef
    12.Clyne TR, Li X, Marasteanu MO, Engene K (2003) Dynamic modulus and resilient modulus of Mn/dot asphalt mixtures. Report: MN/RC–2003-09: Minnesota Department of Transportation, St. Paul
    13.Contreras JN, Fresno DC, Zamanillo AV (2010) Dynamic modulus of asphalt mixture by ultrasonic direct test. NDT&E Int 43(1):629–634CrossRef
    14.Cross SA, Jakatimath Y (2007) Determination of dynamic modulus master curves for Oklahoma HMA mixtures. Final report: Oklahoma Department of Transportation, Oklahoma, USA
    15.El-Badawy S, Awed A, Bayomy F (2011) Evaluation of the MEPDG dynamic modulus prediction models for asphalt concrete mixtures. Transportation and Development Institute Congress 2011, pp 576–585
    16.El-Badawy S, Bayomy F, Awed A (2012) Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for Idaho. J Mater Civ Eng 24(11):1412–1421CrossRef
    17.Federal Highway Administration (FHWA). (1998) Strategic Highway Research Programme, Washington DC, USA
    18.Flintsch GW, Loulizi A, Diefenderfer BK (2007) Asphalt material characterization in support of implementation of mechanistic empirical pavement design guide. Virginia Transportation Research Council: Final report, report no. VTRC 07-CR10
    19.Gedafa DS, Hossain M, Romanoschi S, Gisi AJ (2010) Field verification of Superpave dynamic modulus. J Mater Civ Eng 22(5):485–494CrossRef
    20.Irfan M, Khurshid MB, Ahmed A, Labi S (2012) Scale and condition economies in asset preservation cost functions: case study involving flexible pavement treatments. J Transp Eng 138(2):218–228CrossRef
    21.Hassan HF, Al-Jabri K (2011) Laboratory evaluation of hot-mix asphalt concrete containing copper slag aggregate. J Mater Civ Eng 23(6):879–885CrossRef
    22.Hossain N, Singh D, Zaman M (2013) Dynamic modulus-based field rut prediction model from an instrumented pavement section. Procedia—Social Behav Sci 104:129–138CrossRef
    23.Khattab AM, El-Badawy SM, Al Hazmi A, Elmwafi M (2014) Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-pavement ME design in the kingdom of Saudi Arabia. Constr Build Mater 64:360–369CrossRef
    24.Kumar SA, Veeraragavan A (2011) Dynamic mechanical characterization of asphalt concrete mixes with modified asphalt binders. Mater Sci Eng A 528(21):6445–6454CrossRef
    25.McCarthy PS (2001) Transportation economics-theory and practice: a case study approach. Black well Publishers, Malden
    26.National Cooperative Highway Research Program (NCHRP) (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures. NCHRP Final report 1-37A, TRB; Washington DC, USA
    27.National Highway Authority (NHA) (1998) General Specifications. NHA Head Quarters, 27 Mauve Area, G-9/1, Islamabad, Pakistan
    28.PASW Statistics 18. Predictive Analytics Software (formerly SPSS Statistics) (2012) SPSS Inc. Headquarters, Chicago. http://​www.​spss.​com/​softwares/​statistics/​statistics/​statistics-base
    29.Plati C, Georgouli K, Loizos A (2013) Asphalt concrete stiffness modulus estimation utilizing an algorithm approach. Airfield Highway Pavement 2013:1219–1228
    30.Shu X, Huang B (2008) Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures. Composites B 39(4):704–713MathSciNet CrossRef
    31.Shu X, Huang B (2009) Predicting dynamic modulus of asphalt mixtures with differential method. Road Mater Pavement Design 10(2):337–359CrossRef
    32.Ye Q, Wu S, Li N (2009) Investigation of dynamic and fatigue properties of fiber- modified asphalt mixtures. Int J Fatigue 31(10):1598–1602CrossRef
    33.You Z, Adhikari S, Kutay ME (2009) Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. Mater Struct 42:617–630CrossRef
    34.Yu H, Shen S (2011) Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method. Constr Build Mater 26(3):302–309
    35.Zhu H, Sun L, Yang J, Chen Z, Gu W (2011) Developing master curves and predicting dynamic modulus of polymer-modified asphalt mixtures. J Mater Civ Eng 23(2):131–137CrossRef
    36.Li J, Zofka A, Yut I (2012) Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US region. Road Mater Pavement Design 13(2):249–265CrossRef
  • 作者单位:Yasir Ali (1)
    Muhammad Irfan (2)
    Sarfraz Ahmed (2)
    Shahab Khanzada (3)
    Tariq Mahmood (4)

    1. School of Civil & Environmental Engineering (SCEE), National Institute of Transportation (NIT), National University of Sciences & Technology (NUST), Islamabad, 44000, Pakistan
    2. Military College of Engineering, National University of Sciences & Technology, NUST Campus, Risalpur, 24080, Pakistan
    3. National Highway Authority (NHA), Mauve Area, G-9/1, Islamabad, 44000, Pakistan
    4. School of Civil & Environmental Engineering (SCEE), National University of Sciences & Technology (NUST), Islamabad, 44000, Pakistan
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
This study investigated the dynamic response of various asphalt concrete (AC) mixtures subjected to sinusoidal loading. Eight AC mixtures (four wearing and four base course) were selected including (but not limited to): superpave, asphalt institute manual series, and dense bituminous macadam. The uniaxial dynamic modulus (|E*|) test at various temperatures (4.4–54.4 °C) and frequencies (0.1–25 Hz) was conducted using asphalt mixture performance tester. Statistical analysis of two-level factorial was employed to regulate the factors affecting the AC mixtures. The results revealed that an increase in temperature (from 21.1 to 37.8 °C), translated into 45 and 43 % drop in |E*| values on average while 80 and 67 % decrease in |E*| values was attributed to the sweep of frequency (from 25 to 0.1 Hz) for wearing and base course mixes, respectively. Non-linear regression model was developed to express the dynamic modulus as a function of test temperature, loading frequency and mixture volumetric parameter. Furthermore, Witczak model of dynamic modulus prediction was evaluated and the results indicated a close fit with an average under prediction error of 0.20. The study characterized and ranked the representative AC mixtures that could help in selecting the material/gradation for mechanistic-empirical pavement design approach. Keywords Asphalt concrete Mixtures Dynamic modulus Regression model
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.