Flow sensing in developing Xenopus laevis is disrupted by visual cues and ototoxin exposure
详细信息    查看全文
  • 作者:Andrea Megela Simmons (1) (2)
    Michaela Warnecke (2)
    Thanh Thao Vu (2)
    Andrew T. Stevens Smith (2)

    1. Department of Cognitive
    ; Linguistic and Psychological Sciences ; Brown University ; Providence ; RI ; 02912 ; USA
    2. Department of Neuroscience
    ; Brown University ; Providence ; RI ; 02912 ; USA
  • 关键词:Lateral line ; Neuromast ; Rheotaxis ; Tadpole ; Xenopus laevis
  • 刊名:Journal of Comparative Physiology A
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:201
  • 期:2
  • 页码:215-233
  • 全文大小:1,481 KB
  • 参考文献:1. Arnold GP (1974) Rheotropism in fishes. Biol Rev 49:515鈥?76 CrossRef
    2. Bak-Coleman J, Court A, Paley DA, Coombs S (2013) The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information. J Exp Biol 216:4011鈥?024 CrossRef
    3. Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, / Astynax fasciatus. J Comp Physiol A 184:519鈥?27 CrossRef
    4. Batschelet EB (1981) Circular statistics in biology. Academic Press, New York
    5. Brown AD, Mussen TD, Sisneros JA, Coffin AB (2010) Reevaluating the use of aminoglycoside antibiotics in behavioral studies of the lateral line. Hear Res 272:1鈥? CrossRef
    6. Buchanan BW (1973) Effects of enhanced lighting on the behaviour of nocturnal frogs. Anim Behav 45:893鈥?99 CrossRef
    7. Buck LMJ, Winter MJ, Redfern WS, Whitfield TT (2012) Ototoxin-induced cellular damage in neuromasts disrupts lateral line function in larval zebrafish. Hear Res 284:67鈥?1 CrossRef
    8. Claas B, Dean J (2006) Prey capture in the African clawed toad ( / Xenopus laevis): comparison of turning to visual and lateral line stimuli. J Comp Physiol A 192:1021鈥?036 CrossRef
    9. Claas B, M眉nz H (1996) Analysis of surface wave direction by the lateral line system of / Xenopus: source localization before and after inactivation of different parts of the lateral line. J Comp Physiol A 178:253鈥?68 CrossRef
    10. Claas B, M眉nz H, G枚rner P (1993) Reaction to surface waves by / Xenopus laevis Daudin. Are sensory systems other than the lateral line involved? J Comp Physiol A 172:759鈥?65 CrossRef
    11. Coombs S, Grossman GD (2006) Mechanosensory based orienting behaviors in fluvial and lacustrine populations of mottled sculpin ( / Cottus bairdi). Mar Fresh Behav Physiol 39:113鈥?30 CrossRef
    12. Dijkgraaf S (1962) The functioning and significance of the lateral line organs. Biol Rev 38:51鈥?05 CrossRef
    13. Dong W, Lee RH, Xu H, Yang S, Pratt KG, Cao V, Song Y-K, Nurmikko A, Aizenman CD (2009) Visual avoidance in / Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J Neurophysiol 101:803鈥?15 CrossRef
    14. Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2392鈥?412
    15. Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad ( / Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol 148:535鈥?45 CrossRef
    16. Elepfandt A (1996) Sensory perception and the lateral line system in the clawed frog / Xenopus laevis. In: Tinsley RC, Kobel HR (eds) The biology of / Xenopus. Clarendon Press, Oxford, pp 97鈥?20
    17. G枚rner P, Moller P, Weber W (1984) Lateral-line input and stimulus localization in the African clawed toad / Xenopus sp. J Exp Biol 108:315鈥?28
    18. Greenwood JA, Durand D (1955) The distribution of length and components of the sum of n random unit vectors. Ann Math Statist 26:233鈥?46 CrossRef
    19. Hatze H (1988) High precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT approach. J Biomech 21:533鈥?38 CrossRef
    20. Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001 CrossRef
    21. Jaeger RG, Hailman JP (1976) Ontogenetic shift of spectral phototactic preferences in anuran tadpoles. J Comp Physiol Psych 90:930鈥?45 CrossRef
    22. Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin ( / Cottus bairdi). J Exp Biol 206:59鈥?0 CrossRef
    23. Katz LC, Potel MJ, Wassersug RJ (1981) Structure and mechanisms of schooling in tadpoles of the clawed frog,聽 / Xenopus laevis. Anim Behav 29:20鈥?3 CrossRef
    24. Kroese ABA, van den Bercken J (1982) Effects of ototoxic antibiotics on sensory hair cell functioning. Hear Res 6:183鈥?97 CrossRef
    25. Lannoo MJ (1987) Neuromast topography in anuran amphibians. J Morph 191:115鈥?29 CrossRef
    26. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191鈥?98 CrossRef
    27. McDiarmid RW, Altig R (1999) Research: materials and techniques. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. The University of Chicago Press, Chicago, pp 7鈥?3
    28. Mohr C, G枚rner P (1996) Innervation patterns of the lateral line stitches of the clawed frog, / Xenopus laevis, and their reorganization during metamorphosis. Brain Behav Evol 48:55鈥?9 CrossRef
    29. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960鈥?63 CrossRef
    30. Montgomery JC, Macdonald F, Baker CF, Carton AG (2002) Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behav Evol 59:190鈥?98 CrossRef
    31. Montgomery JC, Bleckmann H, Coombs S (2014) Sensory ecology and neuroethology of the lateral line. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) The lateral line system. Springer handbook of auditory research. Springer, New York, pp 121鈥?50
    32. Nieuwkoop PD, Faber J (1994) Normal table of / Xenopus laevis (Daudin). Garland, New York
    33. Olszewski J, Haehnel M, Taguchi M, Liao J (2012) Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 7:e36661. doi:10.1371/journal.pone.0036661 CrossRef
    34. Paterson NF (1939) The head of / Xenopus laevis. Q J Microsc Sci 81:161鈥?34
    35. Roberts A, Feetham B, Pajak M, Teare T (2009) Responses of hatchling / Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae. J Exp Biol 212:914鈥?21 CrossRef
    36. Ruthazer ES, Cline HT (2004) Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. J Neurobiol 59:134鈥?46 CrossRef
    37. Schmidt BP, Knowles JM, Simmons AM (2011) Movements of / Rana catesbeiana tadpoles in weak current flows resemble a directed random walk. J Exp Biol 214:2297鈥?307 CrossRef
    38. Segerdell EJ, Ponferrada VG, James-Zorn C, Burns KA, Fortriede JD, Dahdul W, Vize PD, Zorn AM (2013) Enhanced XAO: the ontology of / Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase. J Biomed Semantics 4:31 CrossRef
    39. Shelton PMJ (1970) The lateral line system at metamorphosis in / Xenopus laevis (Daudin). J Embryol Exp Morph 24:511鈥?24
    40. Shelton PMJ (1971) The structure and function of the lateral line system in larval / Xenopus laevis. J Exp Zool 178:211鈥?32 CrossRef
    41. Simmons AM, Costa L, Gerstein H (2004) Lateral line-mediated behavior in tadpoles of the African clawed frog ( / Xenopus laevis). J Comp Physiol A 190:747鈥?58 CrossRef
    42. Solessio E, Scheraga D, Engbretson GA, Konx BE, Barlow RB (2004) Circadian modulation of temporal properties of the rod pathway in larval / Xenopus. J Neurophysiol 92:2672鈥?684 CrossRef
    43. Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in the fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63鈥?1 CrossRef
    44. Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 7:e29727. doi:10.1371/journal.pone.0029727 CrossRef
    45. Taylor Z, Gurka R, Liberzon A (2010) Long duration, time-resolved PIV to study unsteady aerodynamics. IEEE Trans Instrum Meas 59:3262鈥?269 CrossRef
    46. Tinsley R, Minter L., Measey J, Howell K, Veloso A, N煤帽ez H, Romano A (2009) / Xenopus laevis. In: IUCN 2014. IUCN red list of threatened species. Version 2014.1. www.iucnredlist.org. Downloaded 01 July 2014
    47. van Bergeijk WA (1959) Hydrostatic balancing mechanism of / Xenopus larvae. J Acoust Soc Am 31:1340鈥?347 CrossRef
    48. Van Trump WJ, McHenry MJ (2013) The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish ( / Astyanax fasciatus). Integr Comp Biol 53:799鈥?09 CrossRef
    49. Van Trump WJ, Coombs S, Duncan K, McHenry MJ (2010) Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res 261:42鈥?0 CrossRef
    50. Vogel S, LaBarbera M (1978) Simple flow tanks for research and teaching. BioSci 28:638鈥?43 CrossRef
    51. Webb JF (2014) Morphological diversity, evolution and development of the mechanosensory lateral line system. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) The lateral line system. Springer handbook of auditory research. Springer, New York, pp 17鈥?2
    52. Winklbauer R (1989) Development of the lateral line system in / Xenopus. Prog Neurobiol 32:181鈥?06 CrossRef
    53. Wise SE, Buchanan BW (2006) The influence of artificial illumination on the nocturnal behavior and physiology of salamanders: studies in the laboratory and field. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington DC, pp 221鈥?51
  • 刊物主题:Animal Physiology; Neurosciences; Zoology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1351
文摘
We explored how lateral line cues interact with visual cues to mediate flow sensing behaviors in the nocturnal developing frog, Xenopus laevis, by exposing animals to current flows under different lighting conditions and after exposure to the ototoxin gentamicin. Under dark conditions, Xenopus tadpoles move downstream at the onset of current flow, then turn, and orient toward the direction of the flow with high accuracy. Postmetamorphic froglets also exhibit positive rheotaxis but with less accuracy and longer latency. The addition of discrete light cues to an otherwise dark environment disrupts rheotaxis and positioning. Orientation is less accurate, latency to orient is longer, and animals do not move as far downstream in the presence of light. Compared with untreated tadpoles tested in the dark, tadpoles exposed to gentamicin show less accurate rheotaxis with longer latency and do not move as far downstream in response to flow. These effects are compounded by the presence of light cues. The disruptive effects of light on flow sensing in Xenopus emphasize the disturbances to natural behaviors that may be produced by anthropogenic illumination in nocturnal habitats.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.