Variations in aboveground vegetation structure along a nutrient availability gradient in the Brazilian pantanal
详细信息    查看全文
  • 作者:George L Vourlitis (1)
    Francisco de Almeida Lobo (2)
    Osvaldo Borges Pinto Jr. (3)
    Anthony Zappia (1)
    Higo J Dalmagro (3)
    Paulo Henrique Zanella de Arruda (3)
    Jose de Souza Nogueira (3)

    1. Department of Biological Sciences
    ; California State University ; San Marcos ; CA ; 92096 ; USA
    2. Faculdade de Agronomia
    ; Medicina Veterin谩ria e Zootecnia Departamento de Solos e Engenharia Rural ; Universidade Federal de Mato Grosso ; Mato Grosso ; Brazil
    3. Programa de P贸s-Gradua莽茫o em F铆sica Ambiental 鈥?PGFA
    ; Instituto de F铆sica ; Universidade Federal de Mato Grosso ; Mato Grosso ; Brazil
  • 关键词:Cerrado ; Hyperseasonal savanna ; Nutrient availability ; Nutrient limitation ; Plant ; soil relationships ; Tropical wetlands
  • 刊名:Plant and Soil
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:389
  • 期:1-2
  • 页码:307-321
  • 全文大小:887 KB
  • 参考文献:1. Barbosa, RI, Fearnside, PM (2005) Above-ground biomass and the fate of carbon after burning in the savannas of roraima, Brazilian Amazonia. For Ecol Man 216: pp. 295-316 CrossRef
    2. Bond, WJ (2010) Do nutrient-poor soils inhibit development of forests? a nutrient stock analysis. Plant Soil 334: pp. 47-60 CrossRef
    3. Breitsprecher, A, Bethel, JS (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71: pp. 1156-1164 CrossRef
    4. Chave, J, Andalo, C, Brown, S, Cairns, MA, Chambers, JQ, Eamus, D, Folster, H, Fromard, F, Higuchi, N, Kira, T, Lescure, JP, Nelson, BW, Ogawa, H, Puig, H, Riera, B, Yamakura, T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: pp. 87-99 CrossRef
    5. Colmer, TD, Greenway, H (2010) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 9: pp. 1-19
    6. Couto EG, Chig LA, Nunes da Cunha C, Loureiro MF (2006) Estudo sobre o impacto do fogo na disponibilidade de nutrientes, no banco de sementes e na biota de solos da RPPN SESC Pantanal. Servi莽o Social do Comercio 2, Departamento Nacional, Rio de Janeiro, RJ, Brasil. pp. 56
    7. Dalmagro, HJ, Lobo, FA, Vourlitis, GL, Dalmolin, 脗C, Antunes, MZ, Ort铆z, CER, Nogueira, JS (2013) Photosynthetic parameters for two invasive tree species of the Brazilian pantanal in response to seasonal flooding. Photosynthetica 51: pp. 281-294 CrossRef
    8. Dalmagro, HJ, Lobo, FA, Vourlitis, GL, Dalmolin, 脗C, Antunes, MZ, Ort铆z, CER, Nogueira, JS (2014) The physiological light response of two tree species across a hydrologic gradient in Brazilian savanna (Cerrado). Photosynthetica 52: pp. 22-35 CrossRef
    9. Dalmolin, 脗C, Dalmagro, HJ, Lobo, FA, Antunes, MZ, Ort铆z, CER, Vourlitis, GL (2012) Effects of flooding and shading on growth and gas exchange of Vochysia divergens (Vochysiaceae) an invasive species in the Brazilian Pantanal. Braz J Plant Physiol 24: pp. 75-84 CrossRef
    10. Castro, EA, Kauffman, JB (1998) Ecosystem structure in the Brazilian cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14: pp. 263-283 CrossRef
    11. Durigan, G, Ratter, JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western S茫o Paulo state, Brazil, 1962鈥?000. Edin J Bot 63: pp. 119-130 CrossRef
    12. Eck, TF, Holben, BN, Slutsker, I, Setzer, A (2000) Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for boimass burning aerosols in Amazonia. J Geophys Res 103: pp. 31865-31878 CrossRef
    13. Eiten, G (1972) The cerrado vegetation of Brazil. Bot Rev 38: pp. 201-341 CrossRef
    14. Goldsmith, FB, Harrison, CM (1976) Description and analysis of vegetation methods in plant ecology. Halsted, New York
    15. Goodland, RJ, Pollard, R (1973) The Brazilian cerrado vegetation: A fertility gradient. Ecology 61: pp. 219-224 CrossRef
    16. Grace, J, Jose, JS, Meir, P, Miranda, HS, Montes, RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeo 33: pp. 387-400 CrossRef
    17. Haase, R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Man 117: pp. 129-147 CrossRef
    18. Hanan, EJ, Ross, MS (2010) Across-scale patterning of plant-soil鈥搘ater interactions surrounding tree islands in southern everglades landscapes. Landscape Ecol 25: pp. 463-476 CrossRef
    19. Harrington, RA, Fownes, JH, Vitousek, PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4: pp. 646-657 CrossRef
    20. Hayes, P, Turner, BL, Lambers, H, Laliberte, E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102: pp. 396-410 CrossRef
    21. Hoffmann, WA, Orthen, B, Kielse, P, Nascimento, V (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17: pp. 720-726 CrossRef
    22. Hoffmann, WA, Geiger, EL, Gotsch, SG, Rossatto, DR, Silva, LCR, Lau, OL, Haridasan, M, Franco, AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15: pp. 759-768 CrossRef
    23. Holdo, RM, Mack, MC, Arnold, SG (2012) Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J Veg Sci 23: pp. 352-360 CrossRef
    24. Jobb谩gy, EG, Jackson, RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeosciences 53: pp. 51-77
    25. Jordan, CF, Herrera, R (1981) Tropical rainforests: are nutrients really critical?. Am Nat 117: pp. 167-180 CrossRef
    26. Junk, WJ, Nunes da Cunha, C (2005) Pantanal: a large South American wetland at a crossroads. Ecol Eng 24: pp. 391-401 CrossRef
    27. Junk, WJ, Nunes da Cunha, C (2012) Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction?. Wetlands Ecol Manag 20: pp. 111-122 CrossRef
    28. Junk, WJ, Nunes da Cunha, C, Wantzen, KM, Petermann, P, Strussmann, C, Marques, MI, Adis, J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68: pp. 278-309 CrossRef
    29. Kauffman, JB, Cummings, DL, Ward, DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82: pp. 519-531 CrossRef
    30. Kellman, M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67: pp. 565-577 CrossRef
    31. Laurance, WF, Fearnside, PM, Laurance, SG, Delamonica, P, Lovejoy, TE, Rankin-de Merona, JM, Chambers, JQ, Gascona, C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Man 118: pp. 127-138 CrossRef
    32. Lilienfein, J, Wilcke, W, Zimmermann, R, Gerstberger, P, Araujo, GM, Zech, W (2001) Nutrient storage in soil and biomass of native Brazilian cerrado. J Plant Nut Soil Sci 164: pp. 487-495 CrossRef
    33. Lilienfein, J, Wilcke, W, Vilela, L, Ayarza, MA, Lima, SC, Zech, W (2003) Soil fertility under native cerrado and pasture in the Brazilian savanna. Soil Sci Soc Am J 67: pp. 1195-1205 CrossRef
    34. Lloyd, J, Bird, MI, Vellen, L, Miranda, AC, Veenendaal, EM, Djagbletey, G, Miranda, HS, Cook, G, Farquhar, GD (2008) Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Phys 28: pp. 451-468 CrossRef
    35. Lopes, AS, Cox, FR (1977) Cerrado vegetation in Brazil: an edaphic gradient. Agron J 69: pp. 828-831 CrossRef
    36. Lorenzi H (2002) Arvores Brasileiras: Manual de Identifica莽茫o e Cultivo de Plantas Arboreas do Brasil, Ed. Nova Odessa, Brazil, pp. 367
    37. Malhi Y, Saatchi S, Girardin C, Arag茫o LEOC (2009) The production, storage, and flow of carbon in Amazon forests. Pages 355鈥?72 in Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and Global Change. Geophysical Monograph 186, American Geophysical Union, Washington, DC, USA.
    38. McDonald, LM, Evangelou, VP, Chappell, MA Cation exchange. In: Hillel, D, Rosenzweig, C, Powlson, D, Scow, K, Singer, M, Sparks, D eds. (2005) Encyclopedia of soils in the environment. Academic, San Diego, pp. 180-188
    39. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In Methods of soil analysis: Part 3. Chemical Methods. Soil Science Society of America Book Series No. 5, Soil Science Society of America, Inc., Madison, WI.
    40. Nunes da Cunha, C, Junk, WJ (2001) Distribution of woody plants communities along the flood gradient in the Pantanal of Pocon茅, Mato Grosso, Brazil. Int J Ecol Env Sci 27: pp. 63-70
    41. Nunes da Cunha, C, Junk, WJ (2004) Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Appl Veg Sci 7: pp. 103-110
    42. Nunes da Cunha CA, Junk WL (2009) Preliminary classification of habitats of the pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems. In: Junk WJ, Da Silva CJ, da Cunha N, Wantzen KM (eds) The pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Moscow, pp 127鈥?41
    43. Oliveira, RS, Bezerra, L, Davidson, EA, Pinto, F, Klink, CA, Nepstad, DC, Moreira, A (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19: pp. 574-581 CrossRef
    44. Ostertag, R (2010) Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil 334: pp. 85-98 CrossRef
    45. Paoli, GD, Curran, LM, Slik, JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155: pp. 287-299 CrossRef
    46. Parolin, P, Waldhoff, D, Piedade, MTF Gas exchange and photosynthesis. In: Junk, W, Piedade, MTF, Wittmann, F, Schoengart, J, Parolin, P eds. (2010) Amazonian floodplain forests: ecophysiology biodiversity and sustainable management. Ecological studies. Springer, Dordrecht, pp. 195-214
    47. Pasquini, SC, Santiago, LS (2012) Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168: pp. 311-319 CrossRef
    48. Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa, Agropecuaria, Centro de Pesquisa Agropecuaria do Pantanal, Corumba, MS, Brasil. pp. 319
    49. Quesada, CA, Lloyd, J, Schwarz, M, Baker, TR, Phillips, OL, Pati帽o, S, Czimczik, C, Hodnett, MG, Herrera, R, Arneth, A, Lloyd, J, Malhi, Y, Dezzeo, N, Luiz茫o, FJ, Santos, AJB, Schmerler, J, Arroyo, L, Silveira, M, Priante-Filho, N, Jimenez, EM, Paiva, R, Vieira, I, Neill, DA, Silva, N, Pe帽uela, MC, Monteagudo, A, Vasquez, R, Prieto, A, Rudas, A, Almeida, S, Higuchi, N, Lezama, AT, Lopez-Gonzalez, G, Peacock, J, Fyllas, NM, Alvarez Davila, E, Erwin, T, Fiore, A, Chao, KJ, Honorio, E, Killeen, T, Pe帽a Cruz, A, Pitman, N, Nu帽ez Vargas, P, Salom茫o, R, Terborgh, J, Ramirez, H (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosci Disc 6: pp. 3993-4057 CrossRef
    50. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. Pages 151鈥?12 in Sano SM, Pedrosa de Almeida S, Ribeiro JF (eds), Cerrado Ecologia e Flora, Vol. 1. Emprapa Informacao Technologica, Ministerio da Agricultura, Pecuaria e Abastecimento, Brasilia, Districto Federal, Brasil.
    51. Richardson, SJ, Peltzer, DA, Allen, RB, McGlone, MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86: pp. 20-25 CrossRef
    52. Robertson, GP, Coleman, DC, Bledsoe, CS, Sollins, P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York
    53. Rossatto, DR, Hoffmann, WA, Franco, AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary. Funct Ecol 23: pp. 689-698 CrossRef
    54. Ruggiero, PGC, Batalha, MA, Pivello, VR, Meirelles, ST (2002) Vegetation-soil relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160: pp. 1-16 CrossRef
    55. Saha, AK, O鈥橰eilly Sternberg, LS, Ross, MS, Miralles-Wilhelm, F (2010) Water source utilization and foliar nutrient status differs between upland and flooded plant communities in wetland tree islands. Wetl Ecol Manag.
    56. Sano SM, Pedrosa de Almeida S, Ribeiro JF (2008) Cerrado Ecologia e Flora, Vol. 2. Emprapa Informacao Technologica, Ministerio da Agricultura, Pecuaria e Abastecimento, Brasilia, Districto Federal, Brasil. pp. 1279
    57. Santos, AJB, Silva, GTDA, Miranda, HS, Miranda, AC, Lloyd, J (2003) Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Funct Ecol 17: pp. 711-719 CrossRef
    58. Santos SA, Nunes da Cunha C, Tom谩s W, Pinto de Abreu UG, Arieira J (2006) Plantas invasoras no Pantanal: Como entender o problema e solu莽玫es de manejo por meio de diagn贸stico participativo. Boletim de Pesquisa e Desenvolvimento 66, Embrapa Pantanal, Corumba, MS, Brasil.
    59. Sch枚ngart, J, Wittmann, F, Worbes, M Biomass and NPP of Central Amazonian floodplain forests. In: Junk, WJ, Piedade, MTF, Wittmann, F, Sch枚ngart, J, Parolin, P eds. (2010) Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management. Springer, Heidelberg, pp. 347-388 CrossRef
    60. Sch枚ngart, J, Arieira, J, Felfili Fortes, C, Arruda, EC, Nunes da Cunha, CN (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8: pp. 3407-3421 CrossRef
    61. Shimamura, S, Yamamoto, R, Nakamura, T, Shimada, S, Komatsu, S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106: pp. 277-284 CrossRef
    62. Silva, LCR, Sternberg, LSL, Haridasan, M, Hoffmann, WA, Miralles-Wilhelm, F, Franco, AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Chang Biol 14: pp. 2108-2118 CrossRef
    63. Silva, LCR, Haridasan, M, Sternberg, LSL, Franco, AC, Hoffmann, WA (2010) Not all forests are expanding over central Brazilian savannas. Plant Soil 333: pp. 431-442 CrossRef
    64. Silva, LCR, Hoffmann, WA, Rossatto, DR, Haridasan, M, Franco, AC, Horwath, WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373: pp. 829-842 CrossRef
    65. Sokal RR, Rohlf FJ (1995) Biometry: The principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and Co, New York
    66. Vargas, R, Allen, MF, Allen, EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical. Glob Change Biol 14: pp. 109-124
    67. Viani, RAG, Rodrigues, RR, Dawson, TE, Oliveira, RS (2011) Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 349: pp. 341-353 CrossRef
    68. Vourlitis GL, da Rocha HR (2011) Flux dynamics in the Cerrado and Cerrado-Forest Transition of Brazil. In Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Global Scales. CRC, Inc., Boca Raton, FL, USA.
    69. Vourlitis, GL, Lobo, FA, Biudes, MS, Ort铆z, CER, Nogueira, JS (2011) Spatial variations in soil chemistry and organic matter content across a Vochysia divergens invasion front in the Brazilian Pantanal. Soil Sci Soc Am J 75: pp. 1554-1561 CrossRef
    70. Vourlitis, GL, Lobo, FA, Lawrence, S, Lucena, IC, Borges, OP, Dalmagro, HJ, Ortiz, CER, Nogueira, JS (2013) Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. Soil Sci Soc Am J 77: pp. 1370-1379 CrossRef
    71. Vourlitis, GL, Lobo, FA, Lawrence, S, Holt, K, Zappia, A, Pinto, OB, Nogueira, JS (2014) Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecol 215: pp. 963-975 CrossRef
    72. Wantzen, KM, Couto, EG, Mund, EE, Amorim, RSS, Siqueira, A, Tielb枚rger, K, Seifan, M (2012) Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Ag Ecosys Env 151: pp. 70-79 CrossRef
    73. Wigley, BJ, Coetsee, C, Hartshorn, AS, Bond, WJ (2013) What do ecologists miss by not digging deep enough? Insights and methodological guidelines for assessing soil fertility status in ecological studies. Acta Oecol 51: pp. 17-27 CrossRef
    74. Wood, TE, Lawrence, D, Clark, DA, Chazdon, RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90: pp. 109-121 CrossRef
    75. Worbes, M The forest ecosystem of the floodplains. In: Junk, WJ eds. (1997) The central amazon floodplains. Ecology of a Pulsing System. Springer-Verlag, USA, pp. 223-266 CrossRef
    76. Wright, SJ, Yavitt, JB, Wurzburger, N, Turner, BL, Tanner, EVJ, Sayer, EJ, Santiago, LS, Kaspari, M, Hedin, LO, Harms, KE, Garcia, MN, Corre, MD (2011) Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology 92: pp. 1616-1625 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims Forest expansion into seasonally flooded (hyperseasonal) savanna of the Brazilian Pantanal has been occurring for decades. Our goal was to evaluate how ecosystem physiognomy varied across a nutrient availability gradient and if hyperseasonal savanna had adequate nutrient stocks to support forest expansion. Methods We quantified soil properties, aboveground ecosystem structure, and nutrient stocks of three savanna and three forest stands in the Pantanal of Mato Grosso, Brazil, and used correlation analysis to assess how aboveground vegetation structure varied across a soil nutrient availability gradient. Results Wood and foliage carbon storage and leaf area index were positively correlated with soil extractable phosphorus (P), calcium (Ca2+), and magnesium (Mg2+) concentrations but not soil organic matter or texture. Soil profiles indicated that vegetation enriched surface P and K+ availability but not Ca2+ and Mg2+. Savanna ecosystems had adequate K+, Ca2+, and Mg2+ to support gallery and riparian forests but not palm forest, while the savanna P stock was inadequate to support forest expansion. Conclusions Hyperseasonal savanna has adequate nutrients (except P) to support forest expansion. Forest trees likely invade P-deficient savanna by surviving in P-rich microsites. Over time, biotic enrichment of soil may accelerate forest expansion into P-poor savanna.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.